·

物理学家打造史上最难迷宫:极易碎成微粒

发布时间:2024-08-15 14:02:05阅读量:152
科普文章
转载请注明来源

代达罗斯本可以从英国和瑞士的物理学家团队那里获取灵感。

他们从分形几何和国际象棋的策略游戏中汲取原理,创造出了他们所说的有史以来最难的迷宫。

在英国布里斯托尔大学物理学家菲利克斯·弗利克的带领下,这个研究小组在阿曼-比克尔平纹图案中产生了被称为汉密尔顿循环的路线,创造了复杂的分形迷宫。他们说,这些分形迷宫描述了一种被称为准晶体的特殊物质形态。

它的灵感来自于一个骑士在棋盘上的移动。

“当我们观察我们构建的线条的形状时,我们注意到它们形成了令人难以置信的复杂迷宫。随后迷宫的大小呈指数级增长,且数量无限,”弗莱克解释说。

“在骑士之旅中,棋子(向前跳两个格,向右跳一个格)在回到起始方格前只访问一次棋盘的每个方格。这是‘汉密尔顿循环’的一个例子,即通过地图的循环只访问所有站点各一次。”

准晶体是自然界中极其罕见的物质形态,是固体中有序和无序晶体的奇特混合。

在有序的晶体中 —— 如盐、钻石或石英 —— 原子以非常整齐的模式排列,并在三维空间中重复。你可以将这个晶格的一部分叠加到另一部分上,它们就会完美地匹配。

无序的或无定形的固体是指其中的原子都是乱糟糟的,包括玻璃和一些通常在地球上找不到的冰。

准晶体是一种原子形成图案但不能完美重复的材料。它可能看起来很自相似,但模式的重叠部分将不匹配。

这些相似但不相同的图案,与称为非周期平铺的数学概念非常类似,涉及不完全重复的形状图案。

著名的彭罗斯拼图就是其中之一。Ammann-Beenker拼图是另一个例子。

弗莱克和他的同事,英国卡迪夫大学的物理学家Shobhna Singh和瑞士日内瓦大学的Jerome Lloyd,利用一组二维 Ammann-Beenker拼图,生成了他们认为描述准晶体原子模式的汉密尔顿循环。

他们生成的周期只访问准晶体中的每个原子一次,将所有原子连接在一条直线上,这条直线永远不会交叉,而是从头到尾干净利落地持续下去。它可以无限缩放,产生一个称为分形的数学模式,其中最小的部分与最大的部分相似。

这条线自然产生了一个有起点和出口的迷宫。但这项研究的意义远不止让用餐时坐立不安的孩子开心。

首先,找到汉密尔顿循环是非常困难的。能够识别汉密尔顿解决方案的系统有可能解决许多其他棘手的数学问题,从复杂的寻路系统到蛋白质折叠。

有趣的是,这也暗示了通过吸附来捕获碳的可能性,这是一种工业过程,通过将液体中的分子粘在晶体上来吸收它们。如果我们能在这个过程中使用准晶体,那么柔性分子就可以沿着汉密尔顿循环更紧密地包裹自己。

Singh说:“我们的工作还表明,在某些吸附应用方面,准晶体可能优于晶体。”

“例如,弯曲分子将找到更多方式降落在准晶体的不规则排列的原子上。准晶体也很脆,这意味着它们很容易碎成微小的颗粒。这使它们的吸附表面积最大化。”

如果你碰巧有个牛头怪需要藏起来(迷宫),现在我们知道有人能帮忙了。

这项研究发表在《物理评论X》期刊上。

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

为什么无限求和需要被有意义的?

我的提问:例如单位分解(partition of unity)中的求和以及抽象代数中的多项式表达式。回答:拥有无限多项的求和(或者说更加正式的“级数”)需要一些额外的条件来保证他们“表现良好”("well behaved")。否则你可能得到像以下这样的悖论:$$\begin{align} &S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S = 2 + 2 + 2 + \dots \\ &\Rightarrow 2S = (1+1) + (1+1) + (1+1) + \dots \\ &\Rightarrow 2S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S=S \\ &\Rightarrow S = 0 \end{align}$$一般地,额外的条件包含,要求除了有限数量的项都为$0$(数学简称中的“几乎所有”)或者收敛条件来确保求和有一个极限值。本问题问于2020年1月22号,当时我在读高三,提问的水平非常差😅,跟Peter Scholze这种高中就懂谱序列的没得比🙃。

关于平方可积空间的一些疑问

勒让德多项式是平方可积空间的完备正交基,也是该空间的绍德尔基,即该空间的任意一个元素,可以由其唯一的表示。而勒让德多项式是由x,x^2,x^3....通过施密特正交化原理得到的,两者张成的空间相等都在平方可积空间中稠密,那么我想问的是x,x^2,x^3....是该空间的绍德尔基,即平方可积空间的任意一个元素可由x,x^2,x^3....唯一表示么

范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的

我的提问:众所周知,范畴中对象之间的态射都是保持结构的。但是在一本教材中,我发现它说态射一般是保持结构的。这是否意味着存在不保持结构的态射?回答1:一个范畴不需要非得由带有某些额外结构的集合与保持这个结构的映射构成。不是这种类型的范畴的例子有:给定任意一个群$G$,我们可以构造一个范畴,它由一个对象$*$和每个$g\in G$的一个态射$\varphi_g\colon *\to *$组成。这里,态射的复合通过群运算来定义,并且$\operatorname{id}_* = \varphi_{e}$对于单位元$e\in G$。给定一个偏序集$(P,\le)$,我们可以构造一个范畴,它由对象集$P$和每个满足$x\le y$的$x,y\in P$有且仅有一个的态射$x\to y$组成。拓扑空间的同伦范畴,它的对象都是拓扑空间,每个态射$X\to Y$是一个连续映射$f\colon X\to Y$的同伦群$[f]$。回答2:我认为问题出在这里众所周知,范畴中对象之间的态射都是保持结构的。事实并非如此。范畴这个概念推广了“带有结构的集合和保持结构的函数”,例如群和同态,或者拓扑空间和连续映射。但 ...

如果我看数学看得很慢,这没问题吗?

我在一所知名的数学学院读数学本科,今年是最后一年。然而我发现一件事情,那就是我好像看数学的速度要比班上其他同学慢。比如,无论我尝试多少遍,我似乎都是班上最后做完作业的人,并且我很少有空余时间进行课外阅读。你觉得有哪些建议或者技巧是我可以尝试的?或者说为了节省时间,我是不是应该跳过细节?回答1:提问和给出的信息有些模糊,可能无法给出令人满意和有意义的答案。但我仍然会尝试给出一个答案:我想我们每个人都知道数学中的这些短语,如“easy to see”或者类似的词组,他们能占据一个人数小时注意力,并且显然会导致读完一篇文章所需要花费的时间,比理所当然的要更长。因此如果你为此付出了更多努力,而你的同学们却没有,那读得慢确实没什么问题。还有当你第一次阅读文本的时候,你是否会尝试理解每一个证明中的每一处细节?我非常肯定这不是你每个同龄人都能做到的。并且我发现有几种不同的“类型”。比如说我在第一次看时,往往需要先有个大概的了解,然后再深入理解更为复杂的证明和细节。我同时喜欢多次反复阅读一个文本,因为我记性不好,这或许会让我重复一些东西,但当然也意味着我第一次会看得很快,但也很肤浅(所以我先从鸟的视角 ...

我翻译并整理了一些MathStackExchange的问题和回答

对于数学老手而言,阅读全英文数学甚至是全法语数学,都是可以做到的。但是对于数学萌新而言,阅读全英文的数学内容,可能会比较吃力,也需要花费更多的时间来进行阅读和理解。然而对于做数学的人而言,不懂英文就意味着会有大量优质的英文数学资源无法享用。国外比较有名的数学论坛包括MathStackExchange 与 MathOverflow,都拥有大量优秀的问题以及十分优质的回答,这往往能帮助你解决学习过程中遇到的难题。所以,我觉得可以翻译一些MathStackexchange与MathOverflow的优质内容,让更多的国内的数学爱好者能够接触到优秀的英文数学资源。目前我已翻译,并重新整理以下内容,中英对照(切换语言可见):如何构建一个比复数域ℂ还要大的域?ℝ的有限域扩张是ℝ或者同构于ℂ幂零理想层的局部截面是什么样的?我在哪可以找到一个数学笔友?范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的阿基米德性质的乘法形式如果我看数学看得很慢,这没问题吗?仿射概形上的概形什么时候仿射?如果两个对象的余极限同构,那么这两个对象同构?正弦函数的幂级数展开是否是柯西序列?任意一个范畴之间的本质满射都 ...

抽象代数中如何执行归纳法?

我的提问:我无法理解在这个证明中,归纳法这个步骤是如何进行的。有人能帮帮我吗?感谢!回答:令$n = deg B$。他们通过对$m = deg A$做归纳法来证明那个陈述。基本情况是$m < n$。如果$m \geq n$,然后他们找到另一个多项式$A'$,在这种情况下,$A' = A - B a_m X^{m - n}$,并且它有比$m$更小的阶数。所以我们可以通过归纳假设来处理它。$A′$的商和余数表达式是用于找到$A$的。我想有两件事你可能会觉得困扰,以及为什么你没有认出归纳法。首先,基本情况不仅仅是一种情况,而是一堆情况。这里请注意,这是基本的:证明中的归纳步骤仅适用于$m\geq n$。同时注意,在这种情况下,证明$m=1$的工作量并不比证明$m<n$小:对于所有这些情况,这都是一行证明。你可能会觉得困扰的第二件事是,我们不仅对$m-1$使用归纳假设,对任何阶数严格小于$m$的多项式也使用归纳假设。这被称为完全归纳法或强归纳法:在归纳步骤中,你假设的是,命题不多于$m-1$时都是真的,而不仅仅是$m-1$。这在维基百科的“归纳法”页面上得到了很好的解释。

如何理解$\mathbb{Q}_{p}(p^{1/p^{\infty}})$?

我的提问:众所周知$\mathbb{Q}_{p}(p^{1/p^{\infty}})$被定义为$\bigcup_{n>0} \mathbb{Q}_{p}(p^{1/p^{n}})$,意思是邻接所有$p$的$p$幂根($p$-power roots of $p$)到混合特征域$\mathbb{Q}_{p}$。然而,我不太懂这个符号的意思$\mathbb{Q}_{p}(p^{1/p^{n}})$。这是如何联系到$p$的$p$幂根的?为何在这个记号中,$p$的幂是$1/p^{n}$?我认为$\mathbb{Q}_{p}(p^{1/p^{n}})$是$\mathbb Q_p$的一个割圆扩张,其中$p^{1/p^{n}}$是$n$次单位本原根(primitive $n$th root of unity)。但是似乎这说不通。并且我在另一个回答中看到$\mathbb{Q}_{p}(p^{1/p^{n}})$是一个分歧扩张(ramified extension)。谁能告诉我在哪里可以了解$\mathbb{Q}_{p}(p^{1/p^{n}})$?回答1:根据定义,$\Bbb Q_p(p^{1/p ...

如果两个对象的余极限同构,那么这两个对象同构?

令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美 ...

10.27 弦圈问题分析以及改进计划

最近有不少对弦圈感兴趣的爱好者,在弦圈注册了账号,也有人参与了互动。对此,我在这感谢各位的支持和认可!😃不过经过这段时间,用户注册后的表现,也透露出目前弦圈存在的很多问题。首当其冲的就是首页,默认显示最新内容,用时间顺序排序,意味着大家在首页往往无法看到有趣的内容,也可能找不到他想看的内容。这也导致弦圈中优秀的内容被埋没。因此,针对这个问题,我自己设计了一个简单的热度算法来计算“热度”,然后通过“热度”来排序首页的热门内容。旧的热门内容就是单纯的通过阅读量排序,没有热度随着时间衰减的现象,这也意味着新内容往往容易被旧内容排挤掉。有了更好的热度算法,我就可以将打开首页默认显示最新内容,改为默认显示热门内容了😇。接着就是中英文混合的问题,这个首页已经解决了,首页看到的内容都会把其他语言的给过滤掉。但是圈子内的话,我没有强行设置只有一种语言,因为不太想一些优秀的英文内容被埋没。我有点想参考推特的做法:热门内容推荐的大多数都是一种语言(如中文),只有一两个是其他语言(如英文)。或者说还有一种方案:热门内容全是同一种语言,再增加一个选项”全部“,即查看圈子全部内容。至于数学圈首页,那些数学分支的 ...

可代表层的满射性

我的提问:令$S$为一个基概形,并令$(Sch/S)_{fppf}$为一个大fppf景。令$U$为一个$S$上的概形。假设存在一个满射态射$\Phi_{U}:U\rightarrow U$。那么我们能证明导出的层态射$h_{U}\rightarrow h_{U}$局部满射的?这看起来是错误的。注意到$h_{U}={\rm{Hom}}(-,U)$是一个可代表层。一个$(Sch/S)_{fppf}$上的层映射$F\rightarrow G$是局部满射的,如果对每个概形$U\in{\rm{Ob}}((Sch/S)_{fppf})$和每个$s\in G(U)$,都存在一个覆盖$\{U_{i}\rightarrow U\}_{i\in I}$,使得对所有$i$,$s|_{U_{i}}$在$F(U_{i})\rightarrow G(U_{i})$的像中。回答:令$S:={\rm Spec}(k)$为一个域,并且令$U={\rm Spec}(k[t]/t^2)$。环$k[t]/t^2$是一个$k$-代数,并且存在一个$k$-代数映射$k[t]/t^2\to t$,其将$t$打到$0$,所以我们得到 ...

如何构建一个比复数域$\mathbb{C}$还要大的域?

本文我们探讨这个问题:是否存在一种扩张复数域$\mathbb{C}$的方法,使得$\mathbb{C} \subset\mathbb{C}[a]$?或者$\mathbb{C}$是所有域扩张的终点?下面围绕这个问题,我们将提供两种扩张复数域$\mathbb{C}$的方法。方法1:$\mathbb{C}$的笛卡儿积$$P = {\Bbb C}\times{\Bbb C}\times\cdots$$并不是一个域,因为它有零因子:$$(0,1,0,1,\cdots)(1,0,1,0\cdots)=(0,0,0,0,\cdots)。$$但是将零因子商掉,就能得到一个域。令$\mathcal U$为$\Bbb N$上的一个nonprincipal ultrafilter。我们定义$$(a_1,a_2,\cdots)\sim(b_1,b_2,\cdots)$$当$$\{n\in\Bbb N\,\vert\, a_n=b_n\}\in\mathcal U。$$然后商$F = P/\sim$就是一个严格比$\mathbb{C}$大的域,我们称这个域为超积(英语:ultraproduct)。并且嵌入映射$ ...