MathematicsMathematics·

Note on perfectoid spaces

Published at 2024-04-26 21:18:04Viewed 545 times
Academic article
·
Note
Please reprint with source link

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.

§1. Adic Spaces

Definition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.

§1.1. Morphisms of finite type.

The material can be seen in [SP] and [Hu1].

First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).

Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.

  1. We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.
  4. We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation.

Compared with the above definition, we reach to the case of adic spaces.

Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.

  1. We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.

Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.

§1.2. Unramified, smooth, and étale morphisms.

For definitions of morphisms of finite type and finite presentation, see §1.1.

First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).

Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagram

where $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.

The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.

Definition 1.5. Let $R\rightarrow S$ be a ring map.

  1. We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.
  2. We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.

Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.

Definition 1.6 ([Hu1, Definition 1.6.5]).

  1. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.
  2. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.

Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.

§1.3. Berkovich’s analytic spaces.

We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].

§1.3.1 Underlying topological spaces.

First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.

Definition 1.7.

  1. A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.
  2. A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.

Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.

Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.

Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.

Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.

§1.3.2 The category of analytic spaces.

Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.

If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:

(i) $\mathscr{M}(K)\in\Phi_{K}$.

(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.

(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.

(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.

(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.

Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.

The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).

From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.

Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.

Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.

Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.

§1.4. Rigid analytic varieties.

The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].

§1.4.1 $G$-topological spaces.

As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].

Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:

  1. If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.
  2. If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.
  3. If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.

Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].

We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.

Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists of

  1. a category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, and
  2. a set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.

Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.

We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.

§1.4.2 Presheaves and sheaves on $G$-topological spaces.

The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.

Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$

If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.

Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.

Morphisms of presheaves or sheaves are just natural transformations of functors.

Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.

Hence, we can define presheaves and sheaves on a $G$-topological space.

Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.

The following kind of Grothendieck topology is of special interest to us.

Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:

$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.

$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.

$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.

§1.4.3 Locally $G$-ringed spaces and analytic varieties.

The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.

Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.

Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:

(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.

(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.

We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.

Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.

A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.

Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.

Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.

In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.

Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:

(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.

(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.

§2. Almost mathematics

In this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].


References

  1. [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
  3. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
  4. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
  5. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
  6. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
  7. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
  8. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
  9. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
  10. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
  11. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  12. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
  13. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
  14. [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
  15. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
  16. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
  17. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
  18. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.
Comments
Ricciflows
Ricciflows

We apologize that this note has ended halfway because the author had quit mathematics😭😭

2024-08-14 13:54:14 Reply

弦圈热门内容

cover

地心人和外星人阴谋论

由于本文对超维度到能拨弄时间的文明是否存在这个问题持有悲观态度,因此论述条件限制在三维下。 1.1 地心文明论我们默认地心是指距离地面6000公里的地方,这个地方的特点是:4000摄 氏度以上的极高温360 GPa 的地心压力没有阳光、几乎没有水分、氧气放射性元素衰变产生的大量辐射不依靠【温室】能在这种地方活下来的生物应该具有的特点:不能 是碳基,因为蛋白质DNA细胞分子结构全都会在高温下遭到破坏生物体 结构要异常坚韧,能在极高压下维持运作能有办法直接或间接吸收地热 能量维持生物体运作,且这个过程气体和水不参与反应其生存和繁衍模式能与辐射共生我们目前探测地心的手段有:由于地球内部的密度变化会影响地球重力场,因此精确重力测量可以给出地下岩石密度变化 由于地核中的液态铁和镍会产生磁场,通过探测地球磁场变化可以分析地壳中磁性物质分布遇到液体层会减速的纵向地震波,和只在固体传播的横向地震波人类的理性只能讨论可知的部分,讨论不可知部分是无效操作,在可知的范围内,目前只有少量微生物能在深底层存活,马里亚纳海沟最深处的生物也只是距离地面11公里而已。在可知范围内,没有任何生物能在地心长期生存。在贝叶 ...

Django将已经存在的字段改为外键

我有一个Django模型,它之前是这样的class Car(models.Model): manufacturer_id = models.IntegerField()然后还有另一个名为Manufacturer的模型,id字段所指的就是它。然而,后来我意识到使用Django自带的外键功能,会更方便。因此,我将这个模型改为现在这样class Car(models.Model): manufacturer = models.ForeignKey(Manufacturer)这次修改似乎一下就弄好了,查询出来的结果也没有任何报错,但是当我试着运行数据迁移的时候,Django输出了以下结果- Remove field manufacturer_id from car - Add field manufacturer to car执行这个迁移会清除所有已经存在于数据库里的关系,所以我并不想这么做。我其实并不想做任何的迁移,毕竟像Car.objects.get(manufacturer__name="Toyota")这样的查询没有一点问题。我更想要一个恰当的数据库外键限制,但不是高优先级的那种。总的来说,我的问题是:是否存在一种迁移方法或者别的,能让我将一个已经存在的字段转变为外键?我不能使用--fake因为我需要可靠地在开发、生产和同事的电脑上工作。内容来源于 Stack Overflow, 遵循 CCBY-SA 4.0 许可协议进行翻译与使用。原文链接:Django change an existing field to foreign key

84个万能生活小常识,家家都能用!(收藏起来慢慢看)

生活里爱护一个人,从不该只有空口白牙承诺,还有这些点点的细心照顾,吉米老师准备了84个万能小常识,希望你遇到的人和你彼此照顾,一起感受生活细水长流。01 厨房篇1、炒菜时,不要加冷水,冷水会使菜变老变硬不好吃,而加开水炒出来的菜又脆又嫩。2、炒藕丝时,一边炒一边加些水,能防止藕变黑。3、炒鸡蛋时,一个蛋加一汤匙温水搅匀,就不会炒老,而且炒出的蛋量多,松软可口。4、豆腐下锅前,可先放在开水里浸渍一刻钟,这样可清除泔水味。5、用冷水炖鱼无腥味,并应一次加足水,若中途再加水,会冲淡原汁的鲜味。6、蒸鱼或蒸肉时待蒸锅的水开了以后再上屉,能使鱼或肉外部突然遇到高温蒸气而立即收缩,内部鲜汁不外流,熟后味道鲜美,有光泽。7、熬骨头汤时,中途切莫加生水,以免汤的温度突然下降导致蛋白质和脂肪迅速凝固,影响营养和味道。8、煎荷包蛋时,在蛋黄即将凝固之际,可浇上一汤匙冷开水,会使蛋熟后又黄又嫩,色味俱佳。9、熬猪油时,先在锅内放入少量水,再将切好的猪油放入,这样熬出来的油,颜色晶亮而无杂质。02 食醋篇1、外出容易晕车,如喝下不很酸的食醋水,可以清爽精神,减轻晕车症状。2、失眠,可将一汤匙食醋倒入冷开水中, ...

JSON Parse报错: Unterminated string

我在JSON parse函数中使用转义引号时,遇到了一个常见的问题。如果存在转义引号,在本例中为“test”,则会导致以下错误'SyntaxError: JSON Parse error: Unterminated string'.var information = JSON.parse('[{"-1":"24","0":"","1":"","2":"","3":"0.0000","4":"","5":"0.00","6":"0.00","7":"1.00","8":"0","9":"false","10":"false","11":[""],"12":"","13":"","14":"test\""}]');JSON Lint验证该JSON为有效的。

网站和APP产品举步艰难,AI产品前途未卜

你抄你的内容,我写我的原创内容,我们都有光明的未来。在如今移动互联网时代后期、生成式ai时代初期,互联网上劣币驱逐良币的现象可以说是越来越严重。😂前有百度封杀,后有谷歌的不合理审查。只能说pc端互联网已经进入了一个存量竞争及其激烈的特殊时期。百度在国内早已是被很多人口诛笔伐,搜索出来的结果被不良广告霸占,找不到好的优质内容。这其实还好,早在09年时候百度就传出恶意封杀网站,后来谷歌退出🇨🇳市场以后,有了垄断地位更是可以为所欲为。而谷歌呢,“不作恶”的谷歌相比于百度还是好那么一些,至少对于新网站,不至于像百度那样一下子摁死,根本不给机会,谷歌还是会给些流量。但是谷歌对于中文互联网的搬运抄袭也是睁一只眼闭一只眼,或者说退出了🇨🇳市场,谷歌早也不想在中文互联网投入过多精力。虽然谷歌明面上是说,会打压搬运抄袭,但实际上有不少网站里面的内容全是一字不差的复制,结果非但不是限流,反而是让他们做起来了,不断给他们推流,甚至谷歌广告都给他挂上了,也不知道谷歌广告的审查为什么这么双标,全是原创内容的网站能说成是低质量内容。其实这也是目前很多搜索引擎面对的通病,对于这种内容农场没有很好的处理和解决,导致一 ...

宇宙是被精心设计出来的吗?造物主真的存在吗?

我们对宇宙了解得越多,就会越发惊叹宇宙的精巧之处,宇宙中的各种规律,仿佛就是为我们量身定制一般,宇宙的精巧之处有很多很多,这里随便列举几项意思意思。图片来源网络宇宙诞生时膨胀的速度,如果快一点星系就无法形成,慢一点物质又会因为太过密集而重新坍塌。基本粒子形成时,中子的质量必须比质子稍大一点,使得中子可以衰变成为质子,这样宇宙中才可以有大量的氢元素,从而形成恒星。在四大基本力中,如果引力比现在稍强一点,那么宇宙中的恒星就会很快的耗尽自身的燃料,而如果稍弱一点,太阳又不可能点燃核聚变,宇宙空间将变成一片冰冷、黑暗。同样的,如果其他的基本力与现有的数值稍有不同,宇宙就会出现巨大的改变。图片来源网络需要说明的,上述参数都必须设计得非常精准,其精度通常都要求在小数点之后10几位。对于我们来讲,最精巧的设计莫过于我们的地球,与太阳恰到好处的距离、既不厚也不薄的大气层、足够的水资源、完美的磁场……,在地球附近,有月球帮地球稳定倾角(地球才有四季之分),有木星清理对我们威胁巨大的小行星。图片来源网络……总之一句话,宇宙中的任何细节出了一丁点的差错,我们的世界就将不复存在,甚至整个宇宙都不会出现。那么, ...

宇宙是否真的存在尽头?宇宙边界之外是什么呢?

随着人类科学技术水平的不断提高,我们对宇宙的认知也日益深入。在探索宇宙的过程中,人类面临着无数的疑问和未解之谜。其中最让人着迷的问题包括,宇宙是不是无限大的?宇宙究竟是否有尽头?相对于宇宙的广袤无垠,人类的存在显得微不足道。我们目前能通过技术手段观测到的宇宙范围,被称为可观测宇宙,这是一个直径930亿光年的球体空间。然而这终究只是宇宙的一部分,人类对于宇宙的了解仅仅只是刚刚开始。即便如此,我们仍然忍不住发问,宇宙的空间到底是不是无限延伸的?宇宙是否真的存在尽头呢?如果存在尽头,那尽头之外的“世界”又是怎么一番景象?图片来自网络从古至今,人类对我们脚下的地球和地球之外的空间一直充满了好奇和猜测。最早的古人通过观察,提出了“天圆地方”的观点。这种观点源于他们站在高处观察地表的结果,认为天是圆的,地是方的。随着地理和航海技术的发展,尤其是第一次环球航行的完成,人们终于证明了我们脚下的世界实际上是一个巨大的“球”。随着时间的推移,天文学开始萌芽。古代的天文学家通过夜空中的星星逐渐发现了地球与太阳之间的复杂关系。太阳作为一颗恒星,对地球的影响无处不在。到了现代,我们不仅了解了地球围绕太阳公转的轨 ...

如果万物皆有意识,那么意识从何而来?石头拥有意识吗?

在人们的普遍认知中,意识是最特殊的存在,是我们认识和改造世界的基础条件。而物质是意识的载体,二者存在哲学意义上相互作用的关系。作为已知唯一的智慧生命体,人类自认为我们的意识是最复杂的。因为目前人类已经能够展开一系列的探索活动,而其他生物甚至都没有表现出意识活动的迹象,这也成为科学家们探索的重点。并非只有高级动物才拥有意识活动究竟意识是怎样的存在呢?我们能够与一些小动物进行情感交流,是不是意味着它们的意识活动与人类存在相似之处……在一部分科学家们的探索过程中,他们惊奇地发现,其实不仅只有高级动物拥有意识活动,植物同样可以进行交流,甚至一块石头都有可能拥有复杂的意识,只是我们的探索方式一直存在问题。从表面上看,一块石头可能存在了亿万年,除了地质环境的变化和人为因素影响它们的状态之外,它们几乎不会出现任何变化。而人们认为意识存在于大脑中,所以石头这样的非生命物质不可能存在意识活动。巴特斯克效应实验证明植物有情感巴特斯克效应实验利用特殊的仪器证明,植物拥有情感,在面对人类和动物的威胁时,它们也能够释放出防御以及害怕等信号给周围的同类。而人们无论如何也不会想到,主张进行该实验的科学家最初只是利用 ...

乘坐超光速飞船,来到距离地球2241光年的位置,能否看到秦始皇登基?

在各方面条件均合适的前提下,理论上来说是有一定概率看到秦始皇登基的。在咱们上中学的时候,可能我们的物理老师就给我们讲过非常有趣的现象:夏天打雷下雨,往往在打雷之前会有一串闪电滑向天空,闪电过后就是雷声,对不对?那么我们为什么会先看到闪电,然后再听到雷声呢?再听到雷声呢原因很简单,因为闪电属于光,它的传递速度是光速。而雷属于声音,它的传播速度是声速。一个是30万公里每秒,一个是340米每秒。从这个理论来出发的话,我们就不能发现,在闪电打雷的过程当中,我们往往是最先看到闪电,然后才能听到打雷的声音。好的,在这样一个理论前提之下,我们会就更容易来理解这个话题了,简而言之:光和闪电本质上来说没有太大的区别,它们都是光的一种形式,而它们在传播的过程当中往往和周边的环境介质都有着密切联系。但是我们把这些通通排除在外的话,当一束光飘向外太空的过程当中,在最短的时间之内,它可能到达一个极远值。但是如果想把这个光传递得更远,这中间就需要时间了,而这个时间我们是以光年来衡量的。这个光年指的是什么呢?常规情况下来说,指的是光在一年内传播的距离。拿地球和太阳当一个引子太阳每天东升西落,我们早已经习惯了这样的一 ...

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved