·

一定要很聪明才能学数学专业吗?

发布时间:2025-01-06 11:15:10阅读量:3
普通文章
转载请注明来源

知乎提问:我高考数学120+,也喜欢并热爱数学,但报考志愿时父母以女孩子脑子转的不如男孩子拒绝让我报考专业,于是大学期间自学数学专业课准备考研跨考数学,近期很疑惑,一定是要足够聪明的人才能学好数学吗

我的回答(已删):并不需要很聪明才能学数学,而且大众所谓的聪明一般是指反应很快,就比如说对数学的理解比其它人要快一些。但是这能力其实跟真正的那种科研能力、创造力没啥关系,参考今年fields奖得主Hub,他考试成绩一塌糊涂。在我看来,学数学更重要的是坚持、毅力、冷静,你得沉得下心来学,一次学不懂反复学,这样才能把数学学好。

发布于 2022-10-23 13:09

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

任意一个范畴之间的本质满射都是一个满态射吗?

我的提问:令$\cal{C},\cal{D}$为范畴(或者栈)。令$F:\cal{C}\rightarrow\cal{D}$是一个本质满射的函子,即在对象同构类上满射。然后$F$是小范畴(或者栈)范畴中的一个满态射吗?回答:不是。例如,任何一个对象的范畴之间的函子是本质满射的,但是如果$M_1, M_2$是两个非零幺半群,那么一个直和项的包含映射$M_1 \to M_1 \oplus M_2$,看成是两个单对象范畴间的一个函子,不是一个范畴的满态射。不过记住,“小范畴范畴中的满态射”由于多种原因,在任何特定应用中,都显然不是“正确”的概念。它抛弃了自然变换,所以你忽略了这样一个事实,即你其中在2-范畴里操作;并且在任何特定情况下,你可能需要各种“满态射”的概念。

弦圈编辑器功能介绍及使用技巧

一般编辑器分为Markdown编辑器和富文本编辑器两种,而弦圈目前所用编辑器为富文本编辑器,暂不支持Markdown编辑器。个人认为富文本编辑器对新手更为友好。富文本编辑器用法跟Word大致相同,基本功能不再赘述。在本文中,我们将介绍一下弦圈编写文本所用编辑器的一些特殊功能。这些功能包括插入词条、添加参考文献、引用文献。插入词条插入词条指的是在文本中插入一条圈子百科中词条的链接。主要用于文本中一些难懂且解释需要篇幅的术语。在编辑器中直接点击下图按钮即可进行输入。点击后会弹出对话框,根据提示把带星号的项填好,点击下面的“插入”按钮即可。插入词条后,编辑器中结果如下:发布文章后的效果如下,点击该链接会弹出该术语在圈子百科中的相应解释,非常方便查找相关术语的意思,不用多个页面互相切换:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。添加参考文献添加参考文献指的是在文章的中插入论文格式的参考文献。该功能用于帮助用户生成美化过的、条理性强的、符合论文格式要求的参考文献。在编辑器中直接点击下图按钮即可进行输入。点击后会弹出输入框如下图,根据提示将带星号的项填好,然后点击下方蓝色“确定”按钮 ...

群胚之间的全忠实函子在对象上单射?

我的提问:令$\cal{C}$和$\cal{D}$为两个群胚,即态射都是同构的范畴。令$F:\cal{C}\rightarrow\cal{D}$为一个从$\cal{C}$到$\cal{D}$的全忠实函子。然后$F$在对象上单射吗?换句话说,对象函数$F:{\rm{Ob}}(\cal{C})\rightarrow{\rm{Ob}}(\cal{D})$是单射的?回答:不是。给定任意一个集合$X$,我们可以构造一个叫做$X$上的非离散群胚的群胚,它对$x, y \in X$都有一个唯一的同构$x \to y$。每一个集合间的函数$f : X \to Y$都能导出一个非离散群胚之间的全忠实函子,不管$f$是否是单射的。事实是范畴(不一定群胚)间的一个全忠实函子$F : C \to D$能导出一个对象同构类上的单射。想知道为何,令$i : F(c_1) \cong F(c_2)$为一个同构。因为$F$是全的,$i = F(i')$对某个$i' : c_1 \to c_2$,然后类似的$i^{-1} = F(j)$对某个$j : c_2 \to c_1$。于是,我们有$F(i' \circ j) ...

幂零理想层的局部截面是什么样的?

提问:令$(X, O_X)$为一个概形,然后$I$是一个幂零的理想层,即$I^n=0$对某个$n$。这是否意味着每个$I(U)$都是$O_X(U)$的一个幂零理想?回答:令$I\subseteq \mathcal{O}_X$是一个理想层,然后令$\mathcal{F}$为一个预层,它对每个$X$的开集$U$,都对应一个理想$I(U)^n\subseteq \mathcal{O}_X(U)$。你说$I$是$n$阶幂零的如果$\mathcal{F}^\#$是零,其中$\#$用于表示层化。但是因为$\mathcal{F}$是一个分离的预层,作为$\mathcal{O}_X$的子层,我们有$\mathcal{F}=0$当且仅当$\mathcal{F}^\#=0$(例如参考[1, Tag00WB])。因此,我们推断出以下结论:事实:令$X$是一个概形,而$I$是$\mathcal{O}_X$的一个理想层。然后下面的都是等价的:1. 对所有开集$U$,理想$I(U)^n$是零。2. 预层$U\mapsto I(U)^n$的层化是零。[1] 多位作者, 2020. Stacks project. h ...

如果我看数学看得很慢,这没问题吗?

我在一所知名的数学学院读数学本科,今年是最后一年。然而我发现一件事情,那就是我好像看数学的速度要比班上其他同学慢。比如,无论我尝试多少遍,我似乎都是班上最后做完作业的人,并且我很少有空余时间进行课外阅读。你觉得有哪些建议或者技巧是我可以尝试的?或者说为了节省时间,我是不是应该跳过细节?回答1:提问和给出的信息有些模糊,可能无法给出令人满意和有意义的答案。但我仍然会尝试给出一个答案:我想我们每个人都知道数学中的这些短语,如“easy to see”或者类似的词组,他们能占据一个人数小时注意力,并且显然会导致读完一篇文章所需要花费的时间,比理所当然的要更长。因此如果你为此付出了更多努力,而你的同学们却没有,那读得慢确实没什么问题。还有当你第一次阅读文本的时候,你是否会尝试理解每一个证明中的每一处细节?我非常肯定这不是你每个同龄人都能做到的。并且我发现有几种不同的“类型”。比如说我在第一次看时,往往需要先有个大概的了解,然后再深入理解更为复杂的证明和细节。我同时喜欢多次反复阅读一个文本,因为我记性不好,这或许会让我重复一些东西,但当然也意味着我第一次会看得很快,但也很肤浅(所以我先从鸟的视角 ...

说过多少遍不要All in AI!初创公司没有一个产生现金流的业务就搞AI无异于在裸泳

这段时间是AI大火的时期,企业之间大模型的竞争已经进入白热化阶段,很多初创公司也相继涌入了AI大模型赛道。不少人争相加入AI赛道的原因,是相信,这将会是一场新的工业革命,或者说这相当于上次的互联网革命。这里我并不否认这种观点,而是想指出,现在没人真的能确定这场AI大热是否真的能产生堪比工业革命的收益。如果商业化落地成功,且能满足大量的市场需求从而能产生大量的利润,才能说这或许是一场工业革命。而且换位思考一下,如果你确定这是次巨大的机缘,那为什么要公之于众呢?不仅公之于众还要大肆宣扬,生怕有人不知道,这正常吗?是不是跟股市一样,大喊着“牛市”了,要涨了,然后一堆韭菜入局。目前来看,AI的局势还处在混沌摸索之中,绝大多数人的钱注定会打水漂,已经有大量的AI公司倒下了。讽刺的是,有些通过AI热赚到钱的,反而是卖课割韭菜的。然后关于目前的行情,从明星AI创业公司的动向,也能看出一二,不少明星创业公司选择卖身,或者创始团队分崩离析,还有创始人流下烂摊子直接跑路的。就连最大的OpenAI如今创始人团队都走光了。连明星创业公司都如此,如果你这时候选择All in AI,你想想那失败的风险有多大,就跟 ...

范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的

我的提问:众所周知,范畴中对象之间的态射都是保持结构的。但是在一本教材中,我发现它说态射一般是保持结构的。这是否意味着存在不保持结构的态射?回答1:一个范畴不需要非得由带有某些额外结构的集合与保持这个结构的映射构成。不是这种类型的范畴的例子有:给定任意一个群$G$,我们可以构造一个范畴,它由一个对象$*$和每个$g\in G$的一个态射$\varphi_g\colon *\to *$组成。这里,态射的复合通过群运算来定义,并且$\operatorname{id}_* = \varphi_{e}$对于单位元$e\in G$。给定一个偏序集$(P,\le)$,我们可以构造一个范畴,它由对象集$P$和每个满足$x\le y$的$x,y\in P$有且仅有一个的态射$x\to y$组成。拓扑空间的同伦范畴,它的对象都是拓扑空间,每个态射$X\to Y$是一个连续映射$f\colon X\to Y$的同伦群$[f]$。回答2:我认为问题出在这里众所周知,范畴中对象之间的态射都是保持结构的。事实并非如此。范畴这个概念推广了“带有结构的集合和保持结构的函数”,例如群和同态,或者拓扑空间和连续映射。但 ...

愚者趋乐,智者避苦——叔本华的《人生智慧箴言》

叔本华(Arthur Schopenhaue)是19世纪的德国哲学家,他的个人哲学思想融合了东方佛教和欧洲哲学,对后世影响深远。他的哲学主要在《作为意志和表象的世界》一书中表达,这本书于叔本华年轻时出版,但当时的读者反应相当冷淡;直到晚年,叔本华写了《附录与补遗》作为《作为意志和表象的世界》的补充和说明。由于内容更加精简浅近,很快的引起热烈回响,也令他的主要著作《作为意志和表象的世界》重新受到世人重视。叔本华谈论的人生智慧,是探讨如何尽量幸福快乐地生活的一门艺术。虽然在他的主要著作中,他大致认为在我们的世界,人类期望追求稳固持久的快乐,是一种妄想。这是因为人本质上是受意志不断的驱使,而意志始终处于一种欲求不满的状态,所以使得人总是在渴求和无聊之间摆荡,难以得到安宁。人生的幸福有两个敌人,一是痛苦,二是无聊。……我们在何种程度上成功地远离了一个敌人,就在同样程度上接近了另一个,反之亦然。所以,人生其实就是在痛苦与无聊之间像钟摆一样摆动。不过在《人生智慧箴言》里,他还是试图思考:若要尽量幸福快乐生活,该怎么做最靠谱?叔本华的分析,从跟人有关的三个层次开始。人之所是、人之所有、人之形象一个人 ...

丘成桐:如果我说复几何“无用”,你会不会很失望?

“如果我说复几何暂时还没有跟大数据、人工智能有密切关系,你会不会很失望?”这个是《中国科学报》记者在7月23日举行的复几何与多复变国际会议上,向数学家丘成桐询问类似复几何这这种基础数学研究领域的重要意义时,这位菲尔兹奖得主、美国国家科学院院士、中科院外籍院士、哈佛大学终身教授丘成桐如此直接了当的回答。他说很多领导在听数学家的汇报时,就经常会问这样的问题:“你这个研究有什么实际应用?对发展人工智能等前沿科技有没有好处?”如果科学家的回答是“没有”,领导就会感到很失望,可能就不再支持该项研究了。“应用研究在中国的项目申请上始终占优势,跟这个原因有关。”丘成桐直言。而实际上,这种看似暂时没有什么应用背景的基础学术研究却是非常重要的。其实,基础研究的重要性毋庸讳言,从前不久的“中兴事件”就可见一斑。“中兴事件”涉及的“芯片”问题,表面看是应用的问题,但深层次原因其实是中国在的基础理论的薄弱,也是长期立项重应用轻基础的结果。“没有基础理论的支撑,知其然不知其所以然,只能模仿别人,一个小小的芯片就能‘卡了你的脖子’。”美国加州大学洛杉矶分校终身教授刘克峰坦言,中国过度关注应用,但在基础研究方面却比 ...

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \B ...

如果两个对象的余极限同构,那么这两个对象同构?

令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美 ...