·

Challenges and Future Directions for AI Spark Big Model

发布时间:2024-07-21 11:12:40阅读量:1022
学术文章
·
介绍文
转载请注明来源

Introduction

The rapid evolution of big data technologies and artificial intelligence has radically transformed many aspects of society, businesses, people and the environment, enabling individuals to manage, analyze and gain insights from large volumes of data (Dwivedi et al., 2023). The AI Spark Big Model is one effective technology that has played a critical role in addressing significant data challenges and sophisticated ML operations. For example, the adoption of Apache Spark in various industries has resulted in the growth of a number of unique and diverse Spark applications such as machine learning, processing streaming data and fog computing (Ksolves Team, 2022). As Pointer (2024) stated, in addition to SQL, streaming data, machine learning, and graph processing, Spark has native API support for Java, Scala, Python, and R. These evolutions made the model fast, flexible, and friendly to developers and programmers. Still, the AI Spark Big Model has some challenges: the interpretability of the model, the scalability of the model, the ethical implications, and integration problems. This paper addresses the negative issues linked to the implementation of these models and further explores the  potential future developments that Spark is expected to undergo.

Challenges in the AI Spark Big Model

One critical problem affecting the implementation of the Apache Spark model involves problems with serialization, precisely, the cost of serialization often associated with Apache Spark (Simplilearn, 2024). Serialization and deserialization are necessary in Spark as they help transfer data over the network to the various executors for processing. However, these processes can be expensive, especially when using languages such as Python, which do not serialize data as effectively as Java or Scala. This inefficiency can have a significant effect on the performance of Spark applications. In Spark architecture, applications are partitioned into several segments sent to the executors (Nelamali, 2024). To achieve this, objects need to be serialized for network transfer. If Spark encounters difficulties in serializing objects, it results in the error: org. Apache. Spark. SparkException: Task not serializable. This error can occur in many situations, for example, when some objects used in a Spark task are not serializable or when closures use non-serializable variables (Nelamali, 2024). Solving serialization problems is essential for improving the efficiency and stability of Spark applications and their ability to work with data and execute tasks in distributed systems.

Figure 1: Figure showing the purpose of Serialization and deserialization

The second challenge affecting the implementation of Spark involves the management of memory. According to Simplilearn, 2024, the in-memory capabilities of Spark offer significant performance advantages because data processing is done in memory, but at the same time, they have drawbacks that can negatively affect application performance. Spark applications usually demand a large amount of memory, and poor memory management results in frequent garbage collection pauses or out-of-memory exceptions. Optimizing memory management for big data processing in Spark is not trivial and requires a good understanding of how Spark uses memory and the available configuration parameters (Nelamali, 2024). Among the most frequent and annoying problems is the OutOfMemoryError, which can affect the Spark applications in the cluster environment. This error can happen in any part of Spark execution but is more common in the driver and executor nodes. The driver, which is in charge of coordinating the execution of tasks, and the executors, which are in charge of the data processing, both require a proper distribution of memory to avoid failures (Simplilearn, 2024). Memory management is a critical aspect of the Spark application since it affects the stability and performance of the application and, therefore, requires a proper strategy for allocating and managing resources within the cluster.

The use of Apache Spark is also greatly affected by the challenges of managing large clusters. When data volumes and cluster sizes increase, the problem of cluster management and maintenance becomes critical. Identifying and isolating job failures or performance issues in large distributed systems can be challenging (Nelamali, 2024). One of the problems that can be encountered is when working with large data sets; actions sometimes produce errors if the total size of the results exceeds the value of Spark Driver Max Result Size set by Spark. Driver. maxResultSize. When this threshold is surpassed, it triggers the error: org. Apache. Spark. SparkException: Job aborted due to stage failure: The total size of serialized results of z tasks (x MB) is more significant than Spark Driver maxResultSize (y MB) (Nelamali, 2024). These errors highlight the challenges of managing big data processing in Spark, where complex solutions for cluster management, resource allocation, and error control are needed to support large-scale computations.

Figure 2: The Apache Spark Architecture

Another critical issue that has an impact on the Apache Spark deployment is the Small Files Problem. Spark could be more efficient when dealing with many small files because each task is considered separate, and the overhead can consume most of the job's time. This inefficiency makes Spark less preferable for use cases that involve many small log files or similar data sets. Moreover, Spark also depends on the Hadoop ecosystem for file handling (HDFS) and resource allocation (YARN), which adds more complexity and overhead. Nelamali, 2024 argues that although Spark can operate in standalone mode, integrating Hadoop components usually improves Spark's performance.

The implementation of Apache Spark is also affected by iterative algorithms as there is a problem of support for complex analysis. However, due to the system's architecture being based on in-memory processing, in theory, Spark should be well-suited for iterative algorithms. However, it can be noticed that it can be inefficient sometimes (Sewal & Singh, 2021). This inefficiency is because Spark uses resilient distributed datasets (RDDs) and requires users to cache intermediate data in case it is used for subsequent computation. After each iteration, there is data writing and reading, which performs operations in memory, thus noting higher times of execution and resources requested and consumed, which affects the expected boost in performance. Like Spark, which has MLlib for extensive data machine learning, some libraries may not be as extensive or deep as those in the dedicated machine learning platforms (Nguyen et al., 2019). Some users may be dissatisfied with Spark’s provision since MLlib may present basic algorithms, hyper-parameter optimization, and compatibility with other extensive ML frameworks. This restriction tends to make Spark less suitable for more elaborate analytical work, and a person may have to resort to the use of other tools as well as systems to obtain a certain result.

The Future of Spark

a. Enhanced Machine Learning (ML)

Since ML assumes greater importance in analyzing BD, Spark’s MLlib is updated frequently to manage the increasing complexity of ML procedures (Elshawi et al., 2018). This evolution is based on enhancing the number of the offered algorithms and tools that would refine performance, functionality, and flexibility. Future enhancements is more likely to introduce deeper learning interfaces that can be directly integrated into the Spark platform while implementing more neural structures in the network. Integration of TensorFlow and PyTorch, along with the optimized library for GPU, will be helpful in terms of time and computational complexity required for training and inference associated with high dimensional data and large-scale machine learning problems. Also, the focus will be on simplifying the user interface through better APIs, AutoML capabilities, and more user-friendly interfaces for model optimization and testing (Simplilearn, 2024). These advancements will benefit data scientists and engineers who deal with big data and help democratize ML by providing easy ways to deploy and manage ML pipelines in distributed systems. Better support for real-time analysis and online education will also help organizations gain real-time insights, thus improving decision-making.

b. Improved Performance and Efficiency

Apache Spark's core engine is continuously improving to make it faster and more efficient as it continues to be one of the most popular technologies in the ample data space. Some of the areas of interest are memory management and other higher levels of optimization, which minimize the overhead of computation and utilization of resources (Simplilearn, 2024). Memory management optimization will reduce the time taken for garbage collection and enhance the management of in-memory data processing, which is vital for high throughput and low latency in big data processing. Also, improvements in the Catalyst query optimizer and Tungsten execution engine will allow for better execution of complicated queries and data transformations. These enhancements will be beneficial in cases where large amounts of data are shuffled and aggregated, often leading to performance issues. Future attempts to enhance support for contemporary hardware, like faster storage devices such as NVMe and improvements in CPU and GPU, will only increase Spark's capacity to process even more data faster (Armbrust et al., 2015). Moreover, future work on AQE will enable Spark to adapt the execution plans at runtime by using statistics, which will enhance data processing performance. Altogether, these improvements will guarantee that Spark remains a high-performance and scalable tool that will help organizations analyze large datasets.

c. Integration with the Emerging Data Sources

With the growth of the number of data sources and their types, Apache Spark will transform to process many new data types. This evolution will enhance the support for the streaming data originating from IoT devices that give real-time data that requires real-time analyses. Improved connectors and APIs shall improve data ingestion and processing in real-time, hence improving how quickly Spark pulls off high-velocity data (Dwivedi et al., 2023). In addition, the exact integration with the cloud will also be improved in Spark, where Cloud platforms will take charge of ample data storage and processing. This involves more robust integration with cloud-native storage, data warehousing, and analytics services from AWS, Azure, and Google Cloud. Also, Spark will leverage other types of databases, such as NoSQL, graph, and blockchain databases, to enable the user to conduct analytics on different types and structures of data. Thus, Spark will allow organizations to offer the maximum value from the information they deal with, regardless of its source and form, providing more comprehensive and timely information.

d. Cloud-Native Features

Since cloud computing is becoming famous, Apache Spark is also building inherent compatibility for cloud-based environments that makes its use in cloud environments easier. The updates focusing on the cloud surroundings are the Auto-Scaling Services for the provisioning and configuring tools that simplify the deployment of Spark Clusters on cloud solutions (Simplilearn, 2024). These tools will allow integration with cloud-native storage and compute resources and allow users to grow their workloads on the cloud. New possibilities in resource management will enable the user to control and allocate cloud resources more effectively according to their load, releasing resources in case of low utilization and adapting costs and performance characteristics in this way. Spark will also continue to provide more backing to serverless computing frameworks, enabling users to execute Spark applications without handling the underlying infrastructure. This serverless approach will allow for automatic scaling, high availability, and cost optimization since users only pay for the time the computing resources are used. Improved support for Kubernetes, one of the most popular container orchestration systems, will strengthen Spark's cloud-native features and improve container management, orchestration, and integration with other cloud-native services (Dwivedi et al., 2023). These enhancements will help to make Spark more usable and cost-effective for organizations that are using cloud infrastructure to support big data analytics while at the same time reducing the amount of overhead required to do so.

e. Broader Language Support

Apache Spark is expected to become even more flexible as the support for other programming languages is expected to be added to the current list of Scala, Java, Python, and R languages used in Spark development. Thus, by including languages like Julia, which is famous for its numerical and scientific computing performance, Spark can draw developers working in specific niches that demand high data processing (Simplilearn, 2024). Also, supporting languages like JavaScript could bring Spark to the large community of web developers, allowing them to perform big data analytics within a familiar environment. The new language persists in compatibility to integrate Spark's various software environments and processes that the developers deem essential. Besides, this inclusiveness increases the span of control, thereby making extensive data analysis more achievable, while the increased number of people involved in the Spark platform ideas fosters creativity as more people get a chance to participate as well as earn from the platform (Dwivedi et al., 2023). Thus, by making Spark more available and setting up the possibility to support more programming languages, it would be even more embedded into the vast data platform, and more people would come forward to develop the technology.

f. Cross-Platform and Multi-Cluster Operations

In the future, Apache Spark will experience significant developments aimed at enhancing the long-awaited cross-system interoperability and organizing several clusters or the cluster of one hybrid or multiple clouds in the future (Dwivedi et al., 2023). Such improvements will help organizations avoid having Spark workloads run on one platform or cloud vendor alone, making executing more complex and decentralized data processing tasks possible. The level of interoperability will be enhanced in a way that there will be data integration and data sharing between the on-premise solutions, private clouds and public clouds to enhance data consonance (Simplilearn, 2024). These developments will offer a real-time view of the cluster and resource consumption, which will help to mitigate the operational overhead of managing distributed systems. Also, strong security measures and compliance tools will guarantee data management and security in different regions and environments (Dwivedi et al., 2023). With cross-platform and multi-cluster capabilities, Spark will help organizations fully leverage their data architecture, allowing for more flexible, scalable, and fault-tolerant big data solutions that meet the organization's requirements and deployment topology.

g. More robust Growth of community and Ecosystem

Apache Spark's future is, therefore, closely linked with the health of the open-source ecosystem, which is central to the development of Apache Spark through contributions and innovations. In the future, as more developers, researchers, and organizations use Spark, we can expect to see the development of new libraries and tools that expand its application in different fields (Simplilearn, 2024). Community-driven projects may promote the creation of specific libraries for data analysis, machine learning, and other superior functions, making Spark even more versatile and efficient. These should provide new features and better performance, encourage best practice and comprehensive documentation and make the project approachable for new members if and when they are needed. The cooperation will also be healthy in developing new features for real-time processing and utilising other resources and compatibility with other technologies, as noted by Armbrust et al., 2015. The further development of the Ecosystem will entail more active and creative users who can test and improve the solutions quickly. This culture of continual improvement and expansion of new services will ensure that Spark continues to evolve; it will remain relevant today and in the future for big data analytics and will remain desirable for the market despite the dynamics of the technological landscape.

Conclusion

Despite significant progress, Apache Spark has numerous difficulties associated with big data and machine learning problems when using flexible and fault-tolerant structures: serialization, memory, and giant clusters. Nonetheless, there are a couple of factors that have currently impacted Spark. Nevertheless, the future of Spark is quite bright, with expectations of having better features in machine learning, better performance, integration with other data sources, and the development of new features in cloud computing. More comprehensive language support, single/multiple clusters, more cluster operations, and growth of the Spark community and Ecosystem will further enhance its importance in big data and AI platforms. Thus, overcoming these challenges and using future progress, Spark will go on to improve and offer improved and more efficient solutions in different activities related to data processing and analysis.

References

  1. Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., ... & Zaharia, M. (2015, May). Spark SQL: Relational data processing in Spark. In Proceedings of the 2015 ACM SIGMOD international conference on management of data (pp. 1383-1394).
  2. Dwivedi, Y. K., Sharma, A., Rana, N. P., Giannakis, M., Goel, P., & Dutot, V. (2023). Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions. Technological Forecasting and Social Change, p. 192, 122579.
  3. Elshawi, R., Sakr, S., Talia, D., & Trunfio, P. (2018). Extensive data systems meet machine learning challenges: towards big data science as a service. Big data research, 14, 1-11.
  4. Ksolves Team (2022). Apache Spark Benefits: Why Enterprises are Moving To this Data Engineering Tool. Available at: https://www.ksolves.com/blog/big-data/spark/apache-spark-benefits-reasons-why-enterprises-are-moving-to-this-data-engineering-tool#:~:text=Apache%20Spark%20is%20rapidly%20adopted,machine%20learning%2C%20and%20fog%20computing.
  5. Nelamali, M. (2024). Different types of issues while running in the cluster. https://sparkbyexamples.com/spark/different-types-of-issues-while-running-spark-projects/
  6. Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., ... & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52, 77-124.
  7. Pointer. K. (2024). What is Apache Spark? The big data platform that crushed Hadoop. Available at: https://www.infoworld.com/article/2259224/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html#:~:text=Berkeley%20in%202009%2C%20Apache%20Spark,machine%20learning%2C%20and%20graph%20processing.
  8. Sewall, P., & Singh, H. (2021, October). A critical analysis of Apache Hadoop and Spark for big data processing. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 308–313). IEEE.
  9. Simplilearn (2024). The Evolutionary Path of Spark Technology: Lets Look Ahead! Available at: https://www.simplilearn.com/future-of-spark-article#:~:text=Here%20are%20some%20of%20the,out%2Dof%2Dmemory%20errors.
  10. Tang, S., He, B., Yu, C., Li, Y., & Li, K. (2020). A survey on spark ecosystem: Big data processing infrastructure, machine learning, and applications. IEEE Transactions on Knowledge and Data Engineering, 34(1), 71-91.

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

大白狼人杀非正规入门/提升手册

丘比特讲解篇之前有好一段时间没有及时更新文章,实感抱歉,今天为大家正式介绍一下比较有趣的角色--丘比特(如果之后有时间的话,可能会继续介绍如盗贼,混血儿和野孩子等角色),首先,我们来了解一下丘比特的功能是什么。丘比特:在游戏开始天黑的时候,法官会最先叫醒丘比特,并示意丘比特可以将两位玩家连成情侣(可以将自己也连进链子里),在丘比特闭眼之后法官会让被连在一起的情侣睁眼互相确认恋人号码(但是不同互通身份,即不能告知对方自己是否是狼人或是神民),之后的夜晚丘比特和情侣不会再再夜里睁眼(如果情侣非普通村民的话,在自己角色的环节依然睁眼正常听法官指挥行动)。1. 如果被丘比特连在一起的两个人都是好人的话,则情侣属于好人阵营,丘比特也属于好人阵营,丘比特和链子的胜利条件和好人阵营胜利条件一致。2. 如果被丘比特连在一起的两个人都是狼人的话,则情侣依旧属于狼人阵营,求比特也属于狼人阵营,丘比特和情侣胜利条件和狼人阵营一致。3. 如果被丘比特连在一起的两个人一个是好人,一个是狼人,则丘比特和链子属于第三方阵营,其胜利条件为杀光场上其他所有玩家(即屠城胜利),但要保证所有普通村民和所有神民两者在第三方阵 ...

狼人杀节目的发展史、现有动荡以及未来的路

一眨眼狼人杀的风潮快热了两年了,从第一个节目Lyingman第一季开始——那个时候的绝大部分主播都也还是懵懂状态,对狼人杀这个游戏都还是一知半解。在那时候还是DC大魔王在场上呼风唤雨,以及跟董大师的恩怨情仇;那时候的JY、PDD、09也都还相当稚嫩。遥记得第一季第四期09预言家那局黑死病,09到结束的时候仍一脸茫然——为啥我验谁挂谁,为啥一直验不到狼。Lm第一季虽然狼人杀板块十分短暂,但也是我开始了解狼人杀的第一步,从这以后慢慢开始懂得、明白这个游戏的乐趣和玩法。很快,躺男第二季与大家见面了,虽然第二季采用了11人的板子:3神(预女猎)3狼5民或者丘比特的板子,但是11人的板子还是一样富有乐趣。第二季里少帮主的指点江山以及他的爽朗笑声;嫖弟弟的满口骚话,加上不符合他脸大小的阿飞面具,根本掩盖不住他“强烈”的味道;kk小神每次拿狼时候那掩饰不住的慌张,还有他那不怕被喷的勇猛直爽的性格,虽然有些些倔强和偏激,但是也是在属于那一季的新人里最能给别人留下印象的玩家(当然为啥会清楚记得kk小神还是有第三季的加成);另外还有半路杀出的新世界卡密——半个橙子。在第六集和第七集里面半个橙子逆天的发言强 ...

狼人杀超详入门攻略

文章内容比较长~ 分角色介绍(游戏规则)、狼人战术以及其他各角色玩法三个方面~应该看完之后狼人杀入门是没什么问题了 > <1. 角色介绍(游戏规则)先介绍12人的标准局板子:四神(预言家,女巫,猎人,白痴),四狼,四民一般游戏流程为:1. 天黑,全体玩家闭眼。2. 狼人请睁眼,狼队请商量战术(一般最长给45s时间),狼人请杀人,狼人请闭眼。3. 预言家请睁眼,预言家请验人,预言家请闭眼。4. 女巫请睁眼,女巫昨天晚上死亡的是xx号玩家 ,是否要用药(女巫一天晚上只能使用一瓶药,且女巫使用解药以后就不能获知狼人杀人信息,如果使用了解药之后狼人晚上刀中女巫法官也不会给女巫提示是否是女巫中刀;女巫始终不能自救,即第一天晚上狼人刀中女巫后女巫只能选择使用毒药或者选择不使用药),女巫请闭眼5. 猎人请睁眼,你今天晚上的状态为 (法官每天晚上会叫醒猎人,如果猎人不幸被女巫甩中毒药,法官会给猎人一个手势表示第二天宣布死亡讯息的时候猎人不能发动技能,也不能询问法官是否能发动技能;若晚上法官没有给猎人手势则表示当晚猎人没有死亡或者被狼人杀害,第二天你可以自己选择是否发动技能,若翻牌则一定要发 ...

Grothendieck著名求职信:一个纲领的提纲(Esquisse d'un Programme)

在之前分享EGA的帖子代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列中,我说过会把Grothendieck的其他著作都分享出来,包括《一个纲领的提纲》。一个纲领的提纲,法语原标题为Esquisse d'un Programme,翻译成英文即Sketch of a Programme。这是Grothendieck于1984年提交给CNRS的求职信。 关于该信更详细的背景可见遥远的声音。在这封信中,Grothendieck提出了一个宏伟的理论——远阿贝尔几何(anabelian geometry),即考虑任意代数簇的平展基本群“远离阿贝尔”的部分。可惜Grothendieck直到最后也没能将自己的构想实现,他在该领域留下了冗长且晦涩的《伽罗华长征》(之后我会分享自己收藏的长征节选)。但是远阿贝尔几何的思想却延续了下去,其与Langlands program并列为后Grothendieck时代代数几何的几大方向之一。正是基于Grothendieck的这些思想,才有了之后望月新一在远阿贝尔几何方面的研究成果把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革 ...

Loring W Tu微分几何经典入门教材:An Introduction to Manifolds

Loring W Tu的微分几何入门教材An Introduction to Manifolds,中译名为《流形导论》。这本教材十分适合对微分几何感兴趣的萌新小白作为入门教材,想当年高二的时候,我就是因为看Jürgen Jost的Riemannian Geometry and Analysis看不懂,转而看Loring W Tu的An Introduction to Manifolds补充基础。Loring W Tu的书可以说非常对我胃口,这本书首先内容完备,把微分几何所有重要的基础概念给你讲一遍,而且语言简洁明了、思路清晰、通俗易懂。初三到高中时期,我看过不少微分几何的教材,包括陈省身的《微分几何讲义》,最后还是Loring W Tu的An Introduction to Manifolds让我真正学懂了微分几何😄。本教材从最基础的欧几里得空间光滑函数开始讲起,并不需要太多的前置知识即可开啃😁,只需要有大学本科数分高代的一些基础即可。而且其中的数学英文也并不需要太高的水平,因此也适合初步开始读英文文献的小白用于锻炼自己的英文数学阅读能力。Loring W Tu除了这本流形导论,还有一 ...

Atiyah交换代数经典入门教材:Introduction to Commutative Algebra

在上帖中,我分享了Zariski的交换代数教材:Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)。其实交换代数方面,除了Zariski的教材,还有Atiyah的Introduction to Commutative Algebra,以及Matsumura的Commutative Ring Theory可以作为交换代数的入门教材。Atiyah的教材是这三本教材中最简单的,Zariski的教材虽然很完备,但是篇幅过长,而且内容太过经典了,没有Atiyah的教材那样更加贴近新时代。而Matsumura的教材篇幅要比Atiyah的长一些,而且似乎感觉Atiyah的表达更加通俗易懂一些,毕竟Atiyah是众所周知的大师级人物。下面我们来回忆一下Atiyah的一些人物轶事。Atiyah作为与Serre齐名的伟大数学家,他最著名的工作即是与辛格一起证明了指标定理(Atiyah-Singer Index Theorem)。而Atiyah也与Grothendieck关系匪浅,见下图😁而Atiyah对物理也同样非常感兴趣,他与很多物理学家合作研究过,包括知名的唯一 ...

Matsumura交换代数入门教材:Commutative Ring Theory

在前面两帖Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)和 Atiyah交换代数经典入门教材:Introduction to Commutative Algebra 中,我分享了Zariski和Atiyah的交换代数教材。在本帖中,我把Matsumura的教材也分享出来。在这里我重新回顾一下这三本教材的区别。首先,Zariski的教材很完备,但是篇幅过长,而且内容太过经典了,没有另外两本那么与时俱进。因此Zariski的教材更加适合作为交换代数的词典用于查阅。当然如果你不需要按部就班从头到尾的看完一本书,Zariski的教材选择性的跳着看,完全可以作为入门教材。我高中的时候就是看Zariski的教材的。Atiyah的教材是这三本教材中最简单的,也是篇幅最短的。而Matsumura的教材篇幅要比Atiyah的长一些,并且Matsumura的教材有一些Atiyah中没有的概念,因此也值得一读,不过Atiyah教材的表达要更加通俗易懂一些。因此,我的建议是三本教材都读一读,但没必要全部看完,把需要掌握的基础概念都掌握了就行。读文献时有些术语找不到, ...

记录一下知乎问题《你的编程能力从什么时候开始突飞猛进?》

自从我为了完成毕设而开始全栈写网站,我的编程能力就跟打了鸡血一样,我做梦都没想到自己居然能写出一个像样的网站 弦圈 - 找到属于你的圈子 (manitori.xyz)(不喜勿喷)。原本我是个对编程一窍不通的人,我只对数学感兴趣,对编程可谓是不屑一顾,每次上编程课,我都在下面摸鱼看数学的内容。课后作业以及大作业,要么是CV缝合弄好的,要么就是等别的同学写完直接拿一份抄来应付的。直到后来,我得知毕业的时候只能写毕业设计,不能写纯数学方面的毕业论文,我感觉天都塌了。在距离答辩还有一年的时间里,我某天突然突发奇想的想找些项目来写写玩玩,于是就是梦开始的地方。我第一次接触到了开发网站这个东西(虽然这玩意已经存在很多年了),知道了Vue.js,接着知道了用Python可以做后端,然后就开始上手写个前后端分离的网站。刚开始我也只是随便写写,能应付得了毕设就得了。可是写着写着,我发现自己对编程越来越感兴趣,同时也越写越顺手、越熟练。然后我就开始没日没夜的写,最后经过六个月的开发,第一个网站 弦圈 - 找到属于你的圈子 (manitori.xyz) 于今年4月4日终于上线了。关于编程,我感觉是只有你真正 ...

我们的宇宙并不是由纯数学构成的

在理论物理学的前沿,许多最流行的想法都有一个共同点:它们都从一个数学框架开始,这个框架试图解释比我们目前流行的理论更多的东西。我们目前的广义相对论和量子场论框架在它们所做的事情上很出色,但它们并不是万能的。它们从根本上是不相容的,不能充分解释暗物质、暗能量,也不能充分解释为什么我们的宇宙充满了物质而不是反物质,以及其他谜题。数学确实使我们能够定量地描述宇宙,如果应用得当,它是一种非常有用的工具。但宇宙是一个物理实体,而不是数学实体,两者之间有很大区别。这就是为什么单靠数学,我们永远不足以得出万物的基本理论的原因。16 世纪最大的谜团之一是行星如何以逆行的方式运动。这可以通过托勒密的地心模型(左)或哥白尼的日心模型(右)来解释。然而,要获得任意精度的细节需要我们在理解观察到的现象背后的规则方面取得理论进展,这导致了开普勒定律和牛顿的万有引力理论。大约 400 年前,一场关于宇宙本质的争论正在展开。几千年来,天文学家一直使用地心模型准确描述行星的轨道,在这个模型中,地球是静止的,其他所有物体都围绕着它旋转。借助几何数学和精确的天文观测——包括圆、等距圆、均轮和本轮等工具,天体轨道的精确数学 ...

为什么可能没有体积的量子所组成的物质却有体积?

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力 ...

波尔兹曼大脑:宇宙中漂浮着至少7万5千亿亿亿个意识体

在这个广袤无垠的宇宙中,我们总爱幻想自己独一无二,是万物之灵。但你知道吗?根据某个奇妙的科学理论,你、我,甚至整个地球,可能都只是宇宙中随机“涨落”出来的一个意识体——没错,这就是让人脑洞大开的“玻尔兹曼大脑”假说!熵增定律:宇宙为何越来越“乱”?你的房间如果不打扫,是不是会越来越乱?这就是“熵增定律”在生活中的体现。简单来说,熵就是系统混乱程度的量度,而熵增定律则告诉我们,一个孤立系统的熵总是趋向于增加,直到达到最大化,也就是系统变得最混乱。宇宙,作为一个巨大的孤立系统,按理说也应该遵循这一法则。但奇怪的是,我们观测到的宇宙,似乎是从一个极其有序、熵极低的状态开始的。这,是为什么呢?玻尔兹曼的“脑洞”:宇宙其实是个“随机播放器”?这时,奥地利物理学家路德维希·玻尔兹曼登场了。他提出,熵增定律其实是统计性的,就像抛硬币,虽然正面朝上的概率是50%,但在无限次抛掷中,正面和反面出现的次数会趋于相等。同样,宇宙在大部分时间处于高熵态,但无限的时间尺度上,偶尔也会有“小概率事件”发生,即熵的随机涨落导致低熵态的出现。换句话说,我们现在所看到的这个有序、低熵的宇宙,可能只是一次“宇宙级”的随机 ...

Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis

这本书是几何分析方面的入门教材,该教材先从最基本的黎曼流形讲起,然后逐步深入到李群和向量丛,接着到联络与曲率,基本上覆盖了几何分析很多重要的基础概念。这本书需要有一定的微分几何基础以及分析、李群等相关领域的基础,初学者谨慎使用。我高中的时候,就是对这本书的内容感兴趣,想要尝试理解,结果看到测地线就不懂了,接着后面看了点李群和向量丛就没再看了。建议先读Loring W Tu的两本微分几何教材Loring W Tu微分几何经典入门教材:An Introduction to Manifolds和Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes,有了一定的基础再专研Jürgen Jost的这本教材。我毕竟不是做微分几何的,所以关于这方面的就不说太多了。

Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes

在上帖Loring W Tu微分几何经典入门教材:An Introduction to Manifolds中,我提到高中时期,我为了看懂Jürgen Jost的几何分析教材Riemannian Geometry and Analysis,转而看Loring W Tu的An Introduction to Manifolds以及Differential Geometry Connections, Curvature, and Characteristic Classes。这本教材可以说是An Introduction to Manifolds的后续,建议先看一下An Introduction to Manifolds有了流形的基础,再看这本Connections, Curvature, and Characteristic Classes。本书开始就直接先从黎曼流形开始讲起,接着就讲曲率、联络这些微分几何进阶的重要基本概念。这也是为什么当初我会选择看这本书,因为这些内容刚好有助于我理解Riemannian Geometry and Analysis这本教材的内容(记得当时看到测地线就看不 ...

素数在整数整环中还是素的吗?

我的提问:一个整环$R$中的元素$p$是素的,如果$p$不是零或者一个单元,并且$p|ab$意味着$p|a$或者$p|b$(等价的$ab\in Rp$意味着$a \in Rp$或者$b\in Rp$)。一个整环$R$的元素$q$是不可约的,当$q$不是零或者一个单元,并且$q = ab$意味着$a$或$b$是一个单元。那么素数在整数整环中是素的吗?然后素数都是不可约的吗?回答1:这两个问题的都是对的。根据基础数论的事实,$\pm 1$是唯一可逆的整数,除$\pm 1$以外的整数可以唯一地表示为不同素数的乘积加上$\pm$,每个素数的幂都是正整数,这两个结果都很容易得到。回答2:素数在整数整环中既是素的,也是不可约的。根据定义,它们就是不可约的。为了证明它们是素的,请回顾一下欧几里得算法,该算法用于找到两个整数的GCD(并同时证明任意两个整数都有一个在等价意义下唯一的GCD,其中并不涉及素数的分解)。根据欧几里德算法可以得出,如果$d=\gcd(a,b)$对两个整数$a,b\in\mathbb Z$,则存在整数$u,v\in\mathbb Z$使得$d=ua+vb$。(贝祖特性。)现在, ...