·

为什么可能没有体积的量子所组成的物质却有体积?

发布时间:2024-11-29 09:38:29阅读量:103
科普文章
转载请注明来源

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。

然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?

让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。

上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。

如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力学波长一样,物质粒子也具有等效波长——也就是它的德布罗意波长。

当我们分解物质本身时,我们会发现我们所熟悉的一切实际上都是由更小的成分构成的。例如,人类可以分解成各个器官,而器官又由被称为细胞的单个单位构成。一个成年人体内总共可能有 80 到 100 万亿个细胞,其中只有大约 4 万亿个细胞构成了您通常所认为的身体,包括您的肌肉骨骼系统、结缔组织、循环系统和所有重要器官。另外大约 40 万亿个是血细胞,而您体内有一半的细胞根本没有遗传物质。相反,它们是由单细胞生物(例如主要生活在肠道中的细菌)构成的;从某种角度来看,您的一半细胞甚至不是您!

虽然人类是由细胞构成的,但从更基本的层面上讲,我们是由原子构成的。总的来说,人体内有近 10²⁸ 个原子,按数量计算主要是氢,但按质量计算主要是氧和碳。

细胞本身相对较小,通常只有约 100 微米左右,通常需要显微镜才能单独分辨。然而,细胞根本不是基本的物质单位,而是可以进一步分解成更小的组成部分。更复杂的细胞含有细胞器——执行特定生物功能的细胞成分。这些成分中的每一个又由分子组成,分子的大小从纳米级开始;单个 DNA 分子虽然非常细,但伸直后比人的手指还长!

而分子又由原子组成,原子的直径大约只有一埃,通常具有球对称性,在三个维度上具有相同的尺寸。在 19 世纪的很长一段时间里,人们都认为原子是基本粒子;原子这个名字本身就意味着“无法切割”。但后来的实验表明,原子本身是由更小的成分组成的,包括电子和原子核。即使在今天,电子也无法分解成更小的成分,但原子核毕竟具有有限的尺寸,它们通常只有几飞米的直径,存在于比原子本身小约 100,000 倍的距离尺度上。

虽然从体积上看,原子大部分是空的,主要由电子云组成,但致密的原子核只占原子体积的 10¹⁵ 分之一,却包含原子质量的 ~99.95%。与局限于原子电子的跃迁相比,原子核内部成分之间的反应可以更精确,在更短的时间尺度上发生,并且能量也不同。

但原子核也不是基本粒子,它们是由更小的实体组成的。每个原子核由单个质子或质子和中子的混合物组成,单个质子(或中子)的直径经测量在 0.84 到 0.88 飞米之间。质子和中子本身可以进一步分解为夸克和胶子。最后,至少根据目前最好的实验和观察结果,我们终于知道了构成我们日常生活中接触的大部分正常物质的基本实体:电子、胶子和夸克。

涉及粒子对撞机的高能物理实验对这些基本粒子的大小施加了最严格的限制。得益于欧洲核子研究中心的大型强子对撞机,我们可以明确地说,如果这些粒子中的任何一个确实具有有限的尺寸,或由更小的成分组成,我们最强大的加速器和对撞机也无法将它们分解开来。它们的物理尺寸必须小于约 100 泽米,即 10^-19 米。

不知何故,构成我们所接触的一切事物的基本成分根本没有可测量的尺寸,表现为真正无量纲的点粒子,但它们结合在一起,却产生了我们在所有尺度上发现的全套实体:质子和中子、原子核、原子、分子、细胞成分、细胞、器官和生物。

从宏观尺度到亚原子尺度,基本粒子的尺寸在确定复合结构的尺寸方面只起到很小的作用。这些构成块是否是真正的基本粒子或点状粒子仍不得而知,但我们确实了解宇宙,从大的宇宙尺度到微小的亚原子尺度。夸克和胶子的尺度是我们探索自然的极限。

那么这是如何实现的呢?点状粒子(可能尺寸无限小的粒子)如何结合在一起形成具有正的、有限的、非零尺寸的物理对象?

这有三个方面,这三个方面都是理解我们周围的宇宙所必需的。

首先,存在一条量子规则——泡利不相容原理。它阻止任何两个特定类型的相同量子粒子占据相同的量子态。粒子有两种,费米子和玻色子,虽然对于在同一物理位置可以占据相同量子态的相同玻色子数量没有限制,但泡利不相容原理适用于所有费米子。鉴于每种夸克和每个电子都是费米子,这条规则甚至排除了无限小的粒子在同一空间体积中共存。仅基于这条规则,你就可以看到多个粒子,即使它们本身没有“大小”,也需要彼此相隔有限的距离。

该图显示了标准模型的结构(与基于 4×4 粒子正方形的更熟悉的图像相比,它更完整、更少误导地显示了关键关系和模式)。具体来说,该图描绘了标准模型中的所有粒子(包括它们的字母名称、质量、自旋、手性、电荷以及与规范玻色子的相互作用:即强力和电弱力)。它还描绘了希格斯玻色子的作用和电弱对称性破坏的结构,表明希格斯真空期望值如何破坏电弱对称性以及其余粒子的性质如何因此而改变。但中微子的质量仍未得到解释。

第二个方面是这些粒子具有固有的基本属性,这些属性包括电荷、弱同位旋和弱超电荷以及色荷等。具有电荷的费米子粒子(受泡利不相容原理影响的粒子)将受到电磁力,与光子耦合。具有弱同位旋和弱超电荷的费米子粒子会受到弱核力,与 W 和 Z 玻色子耦合。而具有色荷的费米子粒子会受到强核力,与胶子耦合。

事实证明,夸克和电子(以及电子的两个较重的基本表亲,即介子和τ粒子)都带有电荷,这意味着它们都经历了电磁相互作用。在电磁学中,同性电荷(++ 或 - -)排斥,而异性电荷(+- 或 - +)吸引,物体越接近,力就越强。所有夸克都具有色荷,这意味着它们都经历了强核力。强核力总是具有吸引力,但表现方式不太直观,在粒子间距非常小的情况下,强力会变为零,但两个带色荷的物体之间的距离越远,强力就会增强。如果两个复合物体总体上是色中性的,但由具有色荷的实体(如质子和中子)组成,它们会表现出所谓的残余强力,这种力会吸引附近带有色荷成分的物体,但随着它们之间距离的增加,这种力会很快降至零。

泡利不相容原理阻止两个费米子在同一个量子系统中以相同的量子态共存。然而,它只适用于费米子,如夸克和轻子。它不适用于玻色子,因此,可以在同一量子态中共存的相同光子的数量没有限制。这就是为什么含有费米子的恒星残骸,如白矮星和中子星,可以抵御引力坍缩,因为泡利不相容原理限制了有限数量的费米子可以占据的体积。

同时,所有基本费米子都具有某种类型的弱电荷(同位旋或超电荷),但考虑物体的大小时可以安全地忽略这种力。

最后,决定宇宙中物体大小的第三个因素是宇宙中所有费米子(和一些玻色子)固有的另一个基本量子属性——质量。如果一个物体没有质量,即其质量为零,那么它就不能保持静止,而是必须始终保持运动,而且必须以宇宙中允许的最快速度——光速来运动。光子没有质量,胶子没有质量,引力波也没有质量。它们都可以携带能量,但没有固有质量,因此,它们总是以允许的最大速度运动。

值得庆幸的是,宇宙中有许多实体确实具有质量,包括所有夸克、电子和电子的(较重的)近亲:μ 子和 τ 粒子。电子是极轻的粒子,而夸克的重量范围从“比电子稍重”(上下夸克)到“已知最重的基本粒子”(顶夸克)。拥有质量意味着粒子的移动速度低于光速,甚至能让它们在适当的条件下静止下来。如果没有夸克和电子的巨大性质,以及赋予这些粒子质量的希格斯场,这些物体(如质子、原子核、原子)以及随后由它们构建的一切将完全不可能形成束缚态!

强力之所以能发挥作用,是因为存在“色荷”和胶子交换,强力是将原子核结合在一起的力。这种力由大量胶子的交换控制,速度受光速限制;从黑洞视界内部来看,这样的力不可能阻止任何外层粒子到达中心奇点。

牢记这三个方面:

· 没有两个相同的费米子可以在同一位置占据相同的量子态,

· 粒子带电荷,这些电荷决定了它们所受力的类型和大小,

· 有些粒子具有有限的、正的、非零的静止质量,

我们最终可以开始用无限小尺寸的组成部分构建特定的、有限尺寸的物体。

让我们从质子和中子开始吧!它们是由夸克和胶子组成的实体。每个质子和中子内的夸克都带有电荷和色荷。相似夸克(上-上或下-下)之间的电力会引起排斥,而不同夸克(上-下-上)之间的电力会引起吸引力。当夸克彼此非常接近时,强力可以忽略不计,这意味着如果它们彼此靠近,它们会简单地“滑过”彼此。然而,它们相距越远,它们之间的吸引力就越大,从而阻止它们相距太远。事实上,一旦质子或中子内的夸克彼此达到临界分离距离,强力就会使它们“弹回”彼此,就像拉长的弹簧一样。

由于质子和中子中的夸克具有非零质量,这些夸克必须始终以低于光速的速度移动,从而使它们能够在这种复合结构中加速、减速,甚至(暂时)静止。夸克之间的强力和电磁力结合起来,产生了有限大小的质子和中子——每个略小于 1 飞米。而由于强力的作用,夸克之间的结合能最终成为质子和中子总质量的大部分。质子/中子的质量只有约 1% 来自其内部的夸克,而其余约 99% 来自这种结合能。

单个质子和中子是无色实体:这是当今宇宙中唯一允许存在的夸克态。虽然强力是由无质量(胶子)粒子介导的,但单个束缚态之间存在的唯一力是由介子引起的,介子本身都非常大,严重限制了强力的范围。

原子核稍微简单一些,原子核的体积大约等于其组成质子和中子的总体积。但对于原子本身(电子围绕的原子核)来说,事情就变得有点棘手了。电磁力现在是决定原子大小的因素,因为带正电、质量大的原子核锚定原子,而带负电、质量小得多的电子围绕原子核旋转。由于它们彼此带有相反的电荷,原子核和电子总是相互吸引,但由于每个质子的质量是每个电子的 1836 倍,所以电子会围绕每个原子核快速移动。毫不奇怪,最简单的原子是氢原子,其中只有一个电子围绕一个孤立的质子旋转,由电磁力结合在一起。

现在,记住泡利不相容原理:没有两个相同的费米子可以在同一位置占据相同的量子态。氢原子很小,因为它的电子处于允许的最低能量状态,即基态,并且只有一个电子。然而,较重的原子核(如碳、氧、磷或铁)在其原子核中含有更多质子,因此需要其中有更多的电子。如果较低能量的量子态都充满电子,那么后续电子必须占据更高能量的状态,从而导致更大的电子轨道(平均而言)和占据更大体积的“更蓬松”的原子。每个碳原子有六个电子,氧原子有八个,磷原子有十五个,铁原子每个有二十六个电子。

原子核心的质子越多,原子外围的电子就越多。电子越多,必须占据的能态数量就越多。原子中最高能电子的能态越高,原子必须占据的物理体积就越大。氢原子的直径可能只有约 1 埃,但较重的原子可能大得多,直径可达数埃。

氢原子中不同状态对应的能级和电子波函数,尽管所有原子的配置都极为相似。能级以普朗克常数的倍数量化,但轨道和原子的大小由基态能量和电子质量决定。根据泡利不相容原理,只有两个电子(一个自旋向上,一个自旋向下)可以占据每个能级,而其他电子必须占据更高、体积更大的轨道。当你从较高能级降至较低能级时,如果你只打算发射一个光子,你必须改变你所处的轨道类型,否则你将违反某些无法打破的守恒定律。

尽管原子经常会聚集形成更大的结构,但大多数物体所占的体积主要可以通过了解物体组成原子本身所占的体积来解释。原因很简单:泡利不相容原理指出,没有两个相同的费米子可以占据相同的量子态,它阻止相邻原子的电子侵占另一个原子所占的体积。以人类为例,我们主要由碳、氧、氢和氮组成,其余大部分由磷、钙、铁和其他中等重元素组成。考虑到一个典型的成年人体内大约有 ~10²⁸ 个原子,如果你假设一个典型的原子的边长约为 ~2 埃,那么对于一个成年人来说,这相当于大约 80 升的体积:大约相当于一个体重 ~180 磅(80 公斤)的成年人的体型。

当然,在特殊情况下,这些规则可能会略有不同。例如,在白矮星中,许多原子聚集在一个位置,以至于围绕原子核运行的电子实际上被周围的压缩引力压垮,迫使它们占据比正常情况小得多的体积。在μ子原子中,原子的电子被电子的较重表亲μ子取代,原子的直径仅为电子原子直径的 1/200,因为μ子的质量大约是电子的 200 倍。但对于构成我们熟悉经验的传统物质来说,这是以下因素的累积效应:

· 电子的质量较低但不为零,

· 电子的强负电荷,

· 以及质量巨大、带正电的原子核,

· 结合泡利不相容原理,

正是这些因素决定了原子以及地球上所有物体所占据的体积。从基本的量子实体一直到我们生活的宏观世界,这就是从根本上来说微小的物体,甚至可能是点状物体最终占据如此大空间的原因!

--------------------------------------------

本文转载自公众号一座宁静的书屋

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

怎么学好代数结构?

知乎提问:怎么学好代数结构?我的回答(已删):其实抽象代数确实不太好学,抽象代数顾名思义很抽象。我刚开始学抽象代数的时候,也啃得非常吃力。对此,我建议先坚持学下去,不要停,实在不懂的话先跳过,因为后面的内容说不定能帮助你前面内容的理解。在学习的过程中,多积累一些trivial的例子,不需要太复杂的例子。学习是一个积累的过程,尤其是数学,不应心态过于急躁,对于自己弄不懂的概念要多次仔细揣摩,第一次不行就隔段时间再来一次,多学几遍是没有错的,同时可以尝试看多几本抽象代数的书,看看是不是因为不适合自己口味所以觉得很吃力,找到一本最合自己胃口的书。我个人觉得吧,抽象代数其实也只是非常基础的课程,只要有足够的时间,坚持下去,总能弄懂学会的。加油!原文发布于 2020-08-15 22:492020年8月,应该是高三高考完的那段时间,那个时间也是我数学水平、数学知识飞速提升的时间段,但我也遇到了更多的挑战。大一的时候,我一边想做望月新一的远阿贝尔几何,一边也想做Peter Scholze的算术几何。最后在导师的建议下,我选择了专注做Peter Scholze的算术几何。这个时间段,导师对我来说还是 ...

数学中的「分析」是什么意思?

知乎提问:数学中许多分支名字中带有「分析」二字,如数学分析、实分析、复分析、泛函分析、调和分析、数值分析……牠们的共同点是什么(也就是,「分析」二字是什么意思)?我的回答(原文已删):我感觉分析有研究某个数学对象局部性质的意思。比如说,几何分析就是通过PDE将流形上的局部性质跟整体的拓扑性质联系起来。又比如说,任意形式的波都可以分解成傅立叶级数的形式。这些都是研究局部性质的例子吧。我不是做分析的,这只是我的粗浅理解。。原文发布于 2021-05-24 18:48我看回知乎曾经的回答,我发现2021年前的时间,回答都普遍比较简单。2021年,那时候我应该刚读大一吧,没怎么写过notes,更别提后面写多篇论文了,因此写作能力一般,也懒得长篇大论。

初二可以学习抽象代数吗?

知乎提问:孩子初二,数学成绩经常满分(120)。有时候117 118,孩子说想学点高端的,我想让孩子学抽象代数可行吗我的回答(已删):没必要学,这么着急学这些内容干什么呢,孩子又不一定真的感兴趣,搞不好让他讨厌起了数学更糟糕。数学是以兴趣为主的,什么提前学之类的都是渣渣,提前学又不代表你以后数学成就会很高。初二既然数学成绩还行,那就意味着孩子有更多的空余时间可以做他感兴趣的事情,家长不应该强行给孩子灌输一些不应该在他这个年龄学习的东西。除非你孩子真的很热爱数学,那么你拦都拦不住他自学,还需要你去灌输给他吗?原文发布于 2021-05-28 09:25

你是如何对数学产生兴趣的?

知乎提问:短暂的兴趣也行,有长期的更好。请大家积极分享哦我的回答(已删):我以前是因为物理喜欢数学的,当时特别崇拜Einstein,想要以后做理论物理学。因为Einstein当年也是自学微积分的,于是我也入坑微积分。刚开始,觉得特别难学,无数次想要放弃,但是最后都克服掉了这些困难,学习不少微积分的基础内容,开始感受到数学的美妙。刚开始我在学微积分的同时,还会学一些物理的东西。可是后来,我每次打算学物理最后都会被学数学取而代之,我开始对数学越来越无法自拔,以至于牺牲学习物理的时间。就这样,我就改变了曾经理论物理的方向,转为数学。再后来,我对数学的喜爱远远超过物理了,同时高考备考紧张,我干脆放弃学习物理,全身心投入到数学当中。原文发布于 2021-12-20 20:10

学数学的目的是什么?能给我带来什么?

知乎提问:学数学的目的是什么?能给我带来什么?我的回答:这个问题有点难以用语言来回答。数学带给了我的东西实在太多了,从童年开始到如今,我整个人看待世界的方式,我的三观,我的方方面面早就被数学所改变,并且与数学难以隔离。如果硬要展开来说,我能想到以下几点:首先就是审美,这种审美是指一种抽象意义上的审美,不是简单的说眼睛看到什么觉得很美。这种审美是你个人数学风格、数学品味、数学思想里最根本的东西,几乎会影响你关于数学的一切。你写下的定义、命题、定理“美不美”,你觉得某个理论“美不美”,这些都跟你的审美有关。其次数学给了我夹杂着理性的感性,我经常一边看数学,一边听音乐,这样能让我沉浸在一个独特的精神世界。呆在这个世界里,思绪会变得清晰,情感也会变得起伏,这个时候往往灵感迸发,很多原来想不懂的东西突然就想懂了。用心理学的说法解释,就是数学带给我体验超心流状态(不是心流)。最后数学还带给我理性思维、更加缜密的逻辑等等,这些其他回答也反复提过,就不说了。

怎样才能培养数学兴趣?

知乎提问:怎样才能培养数学兴趣?我的回答:想要培养数学兴趣很简单,首先你肯定要对数学有好感,如果连这点基础都没有估计也很难对数学感兴趣。然后你只需要不断的了解数学、接触数学,形成一个了解数学=>进一步深入了解数学这样的一个循环,自然而然就会对数学感兴趣。具体的讲,你可以做的包括以下几条,可以根据自己的兴趣进行调整:多读数学相关的介绍文章,或者数学方面的一些资讯报道,从浅层了解数学。多读数学家相关的传记,数学家留下的话、数学家分享的经验等等,这里的数学家不仅仅包括过去杰出的数学家,还需要包括如今在世的数学家。多读不同数学领域相关的教材,多方涉猎,加深对数学各个领域的初步理解。这个做法是最能培养数学兴趣和数学品味的。上面两种方式只是辅助第三种方法,毕竟想要了解数学,培养对数学的喜爱,最直接也是最有效的方法,无疑是直接关注数学本身,直接学起来、思考起来。以上三条主要针对初学者,当你不那么初学之后,就不要目光放得太高了。我曾经有段时间就是因为看得太多名人名家的内容,反而开始看不起那些没那么杰出的人,这完全就是愚蠢的想法!多关注身边同样喜欢数学的人或同行,多交流了解对方的想法和经验,这样对 ...

大一上挂科后果严重吗?

知乎提问:大一上挂科后果严重吗?我的回答:还真问题不大,我大一的时候身边就有不少同学挂科了,结果无非是补考,或者严重点的重修,最后都能过。我大一大二的时候也是对挂科害怕不已,每次考前复习都十分紧张。直到后来快毕业的时候,我得知自己居然缺了通识课学分不能发毕业证,而我身边那些挂过科的同学全都学分修够了。那时候我才明白没啥好怕的。。。当然最后那个学分还是补上了,虚惊一场。后面我打算在 数学故事天地 写一篇因为沉迷数学导致挂科而大学无法毕业的小说,虽然我文笔不行,但是我有足够的想象力,只要我把逻辑、故事线、设定全写出来,一样会是丰富的故事内容,只不过细节描写没那么动人、生动。希尔伯特也曾经说过,数学家拥有足够丰富的想象力,完全可以当一个作家。原话我现在在网上已经找不着了,只找到了下面这句话"You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine."  ——David Hilbert“他曾没有足够的想象力来当数学家。不过 ...

今天晚上弦圈服务器发生崩溃情况,已一切正常莫慌,目前判断是腾讯云的问题

之前我对弦圈进行了优化最近有人反馈网站卡、打不开,我自己也试过这种情况,已再次对弦圈进行优化,接着弦圈基本上就没有再出现过问题,网站浏览也很流畅。不过今天晚上前端服务器突然崩了,我发现后马上对服务器进行了重启,重启过程持续了5-10分钟左右吧,真慢。然后又发现了一点问题,就暂时用后端服务器顶替了,之后前端弄好了又重新用回原来的服务器。在这个过程中因为重启了(edge one)CDN,导致https访问会弹出证书不安全的情况,现在也全部正常了。根据我跟其他人的交流得知,他在东京的服务器前几天也突然崩了,崩的原因也是摸不着头脑的IO读写,然后我咨询客服他也没看到异常。我就一个前端服务器,2核4G就放前端代码,怎么可能会是业务问题。然后网站被黑客疯狂扫描,一直都有但也不至于弄崩服务器,目前判断可能是腾讯云自己的问题。

洛必达法则为何成为禁术?

知乎提问:如题,高考用会扣分,大学微积分考试还明令禁止使用洛必达法则(我个人还是好喜欢洛必达法则)疑惑产生于大一半期考试之前,刚刚学极限没多久的时候。为了让学生更好地理解“极限”这个概念,学校用心良苦,在半期考试中ban了洛必达,仅此而已。我的回答:因为洛必达法则并不是洛必达发现的,而是洛必达买下来的😇。说到洛必达法则,我的回忆就倒回到初三和高中时期,当时做高等数学的极限题我都喜欢直接洛必达法则,我不太想考虑除了洛必达还有什么别的计算方法,没必要。因为洛必达法则明显更加友好,反而更加容易让学生熟练掌握极限,我初三乃至高中的时候,学高等数学能学懂,其中就少不了洛必达法则的功劳。其实多用几次洛必达法则感觉上来了,再去理解极限的本质,也不是不可以。只能说国内的这种教育模式非常的按部就班,就必须你按照学校指定的路径来学习,真的就流水线工厂一样,教育被整成这样,教育出来的人自然也很难有创新思维。这只是普通的通过性考试,完全没必要考虑所谓的公平性问题。就好比,初三的时候自学了高中的正弦定理、余弦定理,或者,高三的时候自学了洛必达法则、级数等微积分的东西,可以很轻松的解决某些题目。这种还勉强能狡辩一 ...