··
576
·
2024-11-01 22:13

Grothendick经典同调代数文章:Some aspects of homological algebra

这是Grothendick著名的关于同调代数的文章Tôhoku paper的英文翻译版,原文是法语版,标题为Sur quelques points d'algèbre homologique。英文翻译为:Some aspects of homological algebra。该文章概述了很多同调代数的重要概念,其中基本都跟代数几何有联系,并且里面不少概念其实是Grothendick本人提出来的,如abelian categories。

可以说这篇文章是同调代数的经典文章,在数学圈内也时常有人推荐看这篇文章,毕竟这可是祖师爷亲自从同调代数的基础概念一步步讲起,这对学同调代数或者代数几何的人都有很大裨益。

我收藏这篇文章的时候都2021年了,现在拿出来推荐给大家!之后我还会把法语原版也发出来。

如果您要查看本帖隐藏附件请回复

0 人喜欢

添加评论
评论区
wm_2024
·
25 days ago

感谢楼主!

0
回复
HiddenCloud
·
24 days ago

谢谢大佬!

0
回复
zhousMath
·
19 days ago

感谢楼主

0
回复
henhutu
·
25 days ago

谢谢分享!

0
回复
abstract
·
18 days ago

感谢大佬


0
回复
abstract
·
18 days ago

感谢大佬


0
回复
OPLER
·
a month ago

0
回复
lan2math
·
22 days ago

感谢感谢

0
回复
math
·
22 days ago

感谢

0
回复
Rain_Watcher
·
18 days ago

感谢分享

0
回复
1
12 / page

弦圈热门内容

基变换映射$U\times_{X}X\rightarrow U\times_{Y}Y$

我的提问:令$X,Y$是概形。令$X\rightarrow Y,X\rightarrow X, Y\rightarrow Y$为概形态射。为什么态射$U\times_{X}X\rightarrow U\times_{Y}Y$是$X\rightarrow X\times_{Y}Y$通过$U\times_{Y}Y\rightarrow Y$的基变换。这是我尝试的图,其中三角形是交换的。但是我发现$(U\times_{Y}Y)\times_{Y}(X\times_{Y}Y)=U\times_{Y}X\times_{Y}Y=U\times_{Y}X$,即我无法得到想要的$U\times_{X}X$。我这是犯了什么错误?这是问题的上下文,来自朱歆文的论文Affine Grassmannians and the geometric Satake in mixed characteristic (arXiv link):引理 A.2. 对任何代数空间的平展态射$X\to Y$,由$\sigma_X$导出的相对Frobenius态射$X\to X\times_{Y,\sigma_Y}Y$是一个同构。证 ...

高智商与心理疾病仅“一墙之隔”?

“从天才到疯子,仅有一步之遥。”这是英国诗人约翰·德莱顿的一句名言。世界上许多有才华的人都与精神疾病沾边,这让科学家对这个问题很有兴趣。一直以来,他们都想找到一个答案,高智商与心理疾病之间是否存在一定的相关性?最近,克里蒙特学院联盟培泽学院的科学家在心理学期刊Intelligent发表了一项研究成果,他们发现,高智商人群罹患焦虑、抑郁、自闭等症状的比例要高于普通大众。高智商与精神疾病这项研究的样本比较特别,培泽学院的科学家选择了3715名门萨俱乐部成员,测试他们的精神健康。门萨俱乐部是世界顶级智商社团组织,目前它的会员遍及全球100多个国家和地区,人数高达十几万,智商均在130以上。但是,测试结果显示,其中约有20%的会员患有抑郁症和焦虑症,而在普通人群中,这一比例只有10%。不仅如此,他们还发现,门萨会员似乎也更容易患哮喘、过敏和免疫力底下等疾病。他们试图回答一个问题,高智商是否会加剧心理反应进而影响身体的免疫水平?根据《每日邮报》的报道,研究人员的解释是,高智商人群之所以患精神疾病的比例更高,也许是因为他们过于亢奋、敏感,导致情绪失调。而已有的科学研究认为,心理问题可能引发身体的炎 ...

正弦函数的幂级数展开是否是柯西序列?

考虑正弦函数的幂级数展开$$S=(\sum_{i=0}^{j}\frac{(-1)^{i}}{(2i+1)!}r^{2i+1})_{i\in\mathbb{N}}, 0\leq r\leq2\pi。$$那么$S$是否是柯西序列?令$\varepsilon>0$。是否存在$N>0$使得对于任意$m,n\geq N$,都有$$\left|\sum_{j=n}^{m}\frac{(-1)^{j}}{(2j+1)!}r^{2j+1}\right|\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}<\varepsilon?$$证明1:众所周知,$\sin x$的幂级数展开在任意地方都是收敛的(你可以使用比值审敛法来证明这个结论),然后所有收敛数列都是柯西的,因此$S$是柯西序列。证明2:既然这是研究一个紧致集里的级数,最简单的方法是用下面的不等式:$$\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}(2\pi)^{2j+1}<\varep ...

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \B ...