MathematicsMathematics·

代数几何简介

Published at 2024-05-09 21:35:41Viewed 345 times
Pop-science article
Please reprint with source link

1. Introduction

代数几何是数学的核心领域,也是如今国际数学界的主流。代数几何与许多数学分支都存在广泛的联系,比如数论、微分几何、代数拓扑、复几何、表示论、同调代数、交换代数、偏微分方程等等,这些分支的发展同时也对代数几何起到促进作用。数学史上的许多重大的事件,比如,费马大定理、莫德尔猜想、韦伊猜想的证明都跟代数几何有关。同时,代数几何存在广泛的应用,比如密码学、弦理论、大数据、统计学习理论等等。代数几何之下有众多分支,比如复代数几何,热带几何,算术几何,远阿贝尔几何,$p$进霍奇理论(complex algebraic geometry, tropical geometry, arithmetic geometry, anabelian geometry, p-adic hodge theory),每个分支代表代数几何研究的一个大方向,而在每个大方向下,又有各种以不同的问题为导向的子方向。在这篇文章中,我们将会对代数几何,包括它的分支算术代数几何,做一个简短的介绍。

2. An Introduction to Arithmetic Geometry

算术几何是算术代数几何的简称,它是代数几何的一个分支,主要研究与数论有关的问题,比如丢番图方程。著名的费马大定理其实就是丢番图方程的一种。

Definition 2.1. Diophantine equations are equations whose solutions are required to be integers.

Example 2.2. The equations in Fermat's Last Theorem : $x^{n} + y^{n} = z^{n}$ for all integers $n\geq 2$ are Diophantine equations.

Example 2.3. The equations $ax + by = c$ are called linear Diophantine equations.

Example 2.4. The equations $x^{2} + y^{2} = z^{2}$ are called Pythagorean equations.

从上可以看出椭圆曲线与丢番图方程之间存在某种联系,因此数论上的问题就可以转移到几何上的椭圆曲线进行研究。接下来,我们将给出椭圆曲线的定义,但是在此之前我们先做一些约定。我们记$K$为一个任意的域,$f(x)\in K[x]$ 为$K$上的一个三次多项式,假设这个多项式有不同的根,由于这个域并不一定是代数闭域,因此有些不同的根存在于这个域的代数闭包 $\overline{K}$上。同时,我们假设域$K$不是特征2的。

Definition 2.5. The solutions to the equation $y^{2} = f(x)$ , where $x$ and $y$ are in some extension $K'$ of $K$, are called the $K'$-points of the elliptic curve defined by the equation.

Example 2.6. The locus of the equations $y^{2} = x^{3} - n^{2}x$ is a special case of elliptic curve.

Figure 1. Elliptic curves

从上面的定义和这个例子,我们可以看出椭圆曲线的方程形式上像一个丢番图方程。事实上,当我们限定椭圆曲线方程的解为整数解时,方程就成为了丢番图方程。

既然说到了椭圆曲线,我们不得不提及一下跟椭圆曲线有关联的椭圆函数。椭圆函数是19 世纪数学最光辉的成就之一,它当初是由求椭圆弧长诱导出来的,与椭圆积分也有很密切的联系,毕竟椭圆积分就是用来求椭圆弧长的。顺带一提,椭圆周长目前没有办法求精确值,其周长表达式没法表达成初等函数的形式,它只有椭圆积分表达式以及级数展开式。在定义椭圆函数之前,我们需要先定义复数域$\mathbb{C}$上的lattice。

Definition 2.7. A lattice $L$ in the complex plane is the set of all integral linear combinations of two given complex numbers $\omega_{1}$ and $\omega_{2}$, where $\omega_{1}$ and $\omega_{2}$ are linear independent.

Example 2.8. If we take $\omega_{1}$ = 1 and $\omega_{2}$ = $i$, we will get a lattice of Gaussian integers $\{mi+n| m , n\in \mathbb{Z}\}$.

Definition 2.9. A meromorphic function on $\mathbb{C}$ is said to be an elliptic function relative to a given lattice $L$, if $f(z+l)=f(z)$ for all $l\in L$.

从定义可以看出,椭圆函数是一个双周期的函数。这使人联想到实数情况的单周期函数。一个$\mathbb{R}$上的周期函数,可以看成一个圆上的函数,而一个$L$的椭圆函数则可以看成一个圆环上的函数。我们可以证得关于一个lattice 的所有椭圆函数的集合构成一个域$\mathcal{E}_{L}$,它是所有亚纯函数的域的子域,因为任意两个椭圆函数的和差积商都是椭圆函数。

接下来,我们继续讨论椭圆曲线。椭圆曲线与模形式有紧密的关联,而它们之间的联系成为了证明费马大定理的关键。由于作者并不能完全看懂费马大定理的证明,因此这里不做过多阐述。我们知道当年最后完成费马大定理证明的数学家是Wiles,而Wiles在他的paper 中证明了所有有理数集上的半稳定的椭圆曲线都是modular的,从而使费马大定理成为一个推论被证明。值得一提的是,Wiles在十岁的时候在一本叫做《最后定理》的书中了解到了费马大定理,他很受震撼并打算成为第一个解决费马大定理的人,最后正如他自己所说,很多数学家用自己的一生尝试解决费马大定理都没有成功,最后只有他成功了。关于椭圆曲线、椭圆函数、模形式、费马大定理的证明,想了解更多的读者可以参考[1], [11]

讲完费马大定理,接下来我们来讲讲费马大定理背后的故事,即费马大定理之所以最后能够被Wiles证明,主要是归功于某些数学家的关键性工作。其中两位即是日本数学家Shimura 和Taniyama,他们提出的谷山—志村猜想成为了证明费马大定理的关键一步。还有一位数学大师,在讲他之前我们需要先做一些铺垫。上个世纪,算术几何中不仅仅只有费马大定理,还有韦伊猜想(有限域上的黎曼猜想)、莫德尔猜想。韦伊猜想被Deligne所证明,而莫德尔猜想被Faltings所证明。Deligne和Faltings都是如今数学界的泰斗级人物,不论是Wiles、Deligne还是Faltings ,他们的证明都离不开一个人的奠基性工作,他就是被很多人认为是20世纪最伟大的数学家Grothendieck。Grothendieck被称作代数几何的教皇,有一句很经典的描述他的话就是:“20世纪代数几何涌现了很多天才和菲尔兹奖,但是上帝只有Grothendieck一个。”

Grothendieck的工作使代数几何这门古老的学科重新焕发出新的生命力,这也使代数几何进入如今的黄金时期。Grothendieck的哲学直接被数学所吸收,以至于现在数学的新人根本无法想象Grothendieck时代前这个领域的模样。从二十世纪中叶开始,整个代数几何领域越来越抽象和普遍的研究倾向,大部分都得归功于Grothendieck的影响。Grothendieck 的影响之大,几乎所有数学分支都能感受到。如今的代数几何已经是后Grothendieck时代了,代数几何涌现出了很多后起之秀,比如说日本数学家Shinichi Mochizuki、德国数学家Peter Scholze。

接下来,我们继续介绍算术几何的有关内容。上文中我们提到了可以通过研究椭圆曲线和模形式,进而研究数论问题。而椭圆曲线其实只是代数曲线中的一种特殊情况,代数曲线是算术几何的一个重要研究课题。别看名字很高大上,它其实很常见,比如说在欧几里得平面上的代数曲线,就是我们用多项式方程$f(x,y) = 0$所定义的平面曲线。而想要定义一般的代数曲线就不那么简单了,这需要用到Grothendieck发展的概形的理论。在定义一般的曲线之前,我们需要不少的预备知识,因此在这里我们只做简单的描述,想要了解更多细节的读者可以参考[2]

首先,在定义概形之前,我们需要定义层的概念。我们有阿贝尔群层、环层、模层等等,取决于层所取的范畴。关于范畴论的概念不熟悉的读者可以参考[7]

Definition 2.10 ([2], [16]). Let $X$ be a topological space. A presheaf $\mathcal{F}$ of abelian group on $X$ is a contravariant functor $$ \mathcal{F}:\textbf{Top}^{\textrm{opp}}\rightarrow \textbf{Ab}$$ from the category of open sets of $X$ to the category of abelian groups.

If $\mathcal{F}$ is a presheaf on $X$, the set $\mathcal{F}(U)$ consists of the sections of $\mathcal{F}$ over the open set $U$. If $s\in \mathcal{F}(U)$, we write $s|_{V}$ for an element of $\mathcal{F}(V)$ corresponding to $s$.

Definition 2.11. A presheaf $\mathcal{F}$ on a topological space $X$ is a sheaf, if it satisfies the following conditions:

  1. (Uniqueness) if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$, then for an element $s\in \mathcal{F}(U)$ such that $s|_{V_{i}}$ = 0 for all $i$, we have $s = 0$.
  2. if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$. If we have elements $s_{i}\in \mathcal{F}(V_{i})$ for each $i$, such that for each $i, j$, $s_{i}|_{V_{i} \cap V_{j}} = s_{j}|_{V_{i}\cap V_{j}}$, then there is an element $s \in \mathcal{F}(U)$ such that $s|_{V_{i}} = s_{i}$ for each $i$.

Definition 2.12. Let $\mathcal{F}$ be a presheaf on $X$, if $P$ is a point of $X$, we define the stalk $\mathcal{F}_{P}$ of $\mathcal{F}$ at $P$ to be direct limit of the groups $\mathcal{F}(U)$ $$\lim\limits_{\longrightarrow}\mathcal{F}(U)$$ for all open sets $U$ containing $P$.

一个预层上某个点的茎$\mathcal{F}_{P}$,其实就是一个等价类的集合,我们可以记茎中任意一个元素为$\langle U,s\rangle$,并称它为$\mathcal{F}$截面的芽。其中$U$为$P$ 点的开邻域,$s\in\mathcal{F}(U)$。

接下来,我们记$A$为一个环,$Spec(A)$为该环所有素理想的集合,称为谱。如果$\alpha$是环$A$的任意一个理想,我们记$V(\alpha)\subseteq Spec(A)$为所有包含理想$\alpha$ 的素理想的集合。我们令$V(\alpha)$为$Spec(A)$中的闭集,从而在$Spec(A)$上定义了一个Zariski拓扑。接着,我们再定义拓扑空间$Spec(A)$上的环层$\mathcal{O}$。 这样下来,$(Spec(A),\mathcal{O})$成为一个局部赋环空间。接下来我们给出赋环空间的定义。

回顾一下,一个环$A$被称为局部环,如果它只有唯一一个极大理想$\mathfrak{m}_{A}$。

Definition 2.13. A ringed space is a pair $(X,\mathcal{O}_{X})$, where $X$ is a topological space and $\mathcal{O}_{X}$ is a sheaf of rings on $X$ called the structure sheaf. A ringed space is a locally ringed space, if for each $P\in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.

有了上面这些储备,我们终于可以定义概形。首先我们定义仿射概形,之后就是一般的概形。

Definition 2.14. An affine scheme is a locally ringed space $(X,\mathcal{O}_{X})$, which is isomorphic to a spectrum $\textrm{Spec }A$ of some ring $A$. A scheme is a locally ringed space $(X,\mathcal{O}_{X})$ in which every point $p$ of $X$ has an open neighborhood $U$ such that $(U,\mathcal{O}_{X}|_{U})$ is an affine scheme.

从以上的定义,我们可以看出概形跟流形有异曲同工之妙。对于一个流形来说,它局部上都是一个欧几里得空间。而对于一个概形来说,它局部上都是一个仿射概形,同时因为同构关系,概形局部上的仿射概形可以看成某个环的谱。这样下来,流形由一个个欧几里得空间拼起来,而概形由一个个环的谱拼起来。而事实上,微分几何里的流形是可以用局部赋环空间表示的(更多细节请参考[10], [15])。

现在我们有了概形,就可以定义一般意义上的代数曲线了。在此之前,我们先定义概形的一些基本性质。

Definition 2.15. Let $X$ be a scheme. We say that $X$ is integral if for each open affine set $U\subset X$, $\mathcal{O}_{X}(U)$ is an integral domain.

Definition 2.16. Let $f:X\rightarrow Y$ be a morphism of schemes. The diagonal morphism of $X$ is a morphism $\triangle:X\rightarrow X\times_{Y}X$ such that $\textrm{pr}_{1}\circ\triangle=\textrm{pr}_{2}\circ\triangle=\textrm{id}_{X}$. We say that $f$ is separated or that $X$ is separated over $Y$ if the diagonal morphism of $X$ is a closed immersion.

Definition 2.17. Let $f:X\rightarrow Y$ be a morphism of schemes. We say that $f$ is proper or that $X$ is proper over $Y$ if $f$ is separated, of finite type, and universally closed.

Definition 2.18. Let $X$ be a scheme. The dimension of $X$ is the dimension of its underlying topological space $\textrm{sp}(X)$, which we will denote by $\textrm{dim }X$.

Definition 2.19. An algebraic curve is an integral scheme of dimension 1, proper over a field $K$, all of whose local rings are regular.

因此,一个代数曲线其实就是一个一维的概形。流形也如此,一维的流形也叫做曲线。以上我们完成了对代数曲线的定义,通过代数曲线我们可以研究数论问题。但是,研究代数曲线是需要工具的。在这些工具中,就有algebraic stack和moduli theory。Algebraic stack是stack的特殊情况,stack是对概形的进一步推广。而stack可以看成某种群胚纤维化范畴(category fibred in groupoid),可以运用Descent à la Grothendieck来定义。而moduli theory就是研究某一类数学对象的参数空间,比如曲线的模空间、椭圆曲线的模空间。由于目前这些理论不是作者的研究方向,作者不作过多阐述。

2.1 The $p$-adic numbers field $\mathbb{Q}_{p}$ and the $p$-adic integers ring $\mathbb{Z}_{p}$

接下来,我们来简单说明一下$p$进数域$\mathbb{Q}_{p}$是如何构造出来的。首先,我们以有理数域$\mathbb{Q}$为例,粗略解释一下完备化(completion)的过程:我们取有理数域所有柯西序列构成的集合,定义逐项加法和乘法后可以证明它构成一个交换环,接着模掉所有零序列构成的理想,我们就得到一个完备的域,它是有理数域的域扩张。一个域的完备化不是唯一的,对应不同定义于域上的绝对值,我们可以定义不同的柯西序列,进而构造出不同的完备化。在这里,我们给出任意域上的绝对值与完备域的定义。

Definition 2.20. Let $K$ be a field. An absolute value on $K$ is a map $\left|\cdot\right|:K\rightarrow\mathbb{R}_{\geq0}$ such that $\left|x\right|=0\Leftrightarrow x=0$, $\left|xy\right|=\left|x\right|\left|y\right|$, and $\left|x+y\right|\leq\left|x\right|+\left|y\right|$. We say that $K$ is complete if it is complete with respect to the distance $d(x,y)=\left|x-y\right|$ induced by the absolute value $\left|\cdot\right|$ on it.

接下来我们先定义有理数域上的$p$进序数。

Definition 2.21. Let $p$ be any prime number. We define the $p$-adic ordinal ord$_{p}a$ of an non-zero integer $a$ to be the highest power of $p$ which divides $a$, i.e. the greatest $m$ such that $p^{m}|a$ or $a\equiv0(\textrm{mod }p^{m})$.

我们约定当整数$a=0$时,ord$_{p}a=\infty$。接着对于任意$x=a/b\in\mathbb{Q}$,我们定义$\textrm{ord}_{p}x=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。如果将ord看成一个函数,那么它是良定义的,因为如果将$x$写成$x=ac/bc$,我们有$\textrm{ord}_{p}x=\textrm{ord}_{p}ac-\textrm{ord}_{p}bc=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。

接着我们定义$p$进绝对值:

$$\left| x \right|_{p} = \begin{cases} \frac{1}{p^{\textrm{ord}_{p}x}}, & \textrm{if} \ x\neq 0\\ 0,  & \textrm{if} \ x = 0. \end{cases}$$

我们先阐述复数域$\mathbb{C}$的构造过程,首先我们作有理数域$\mathbb{Q}$的完备化(关于通常的绝对值$\left|\cdot\right|$)$\widehat{\mathbb{Q}}$得到实数域$\mathbb{R}$,然后取实数域的代数闭包$\overline{\mathbb{R}}$ 得到复数域。$p$进数域$\mathbb{Q}_{p}$其实就是有理数域$\mathbb{Q}$的$p$进完备化(关于$p$进绝对值 $\left|\cdot\right|_{p}$)$\widehat{\mathbb{Q}}$。然而当我们取$p$进数域的代数闭包$\overline{\mathbb{Q}}_{p}$时,发现它不是完备的,因此我们对其再作一次完备化,最后得到$\mathbb{C}_{p}$。它是最小的包含有理数域的既是代数闭的,又是完备的域。

于是,我们有如下关系:

$$\begin{cases} \mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}=\widehat{\overline{\widehat{\mathbb{Q}}}}, \textrm{p-adic analog} \\ \mathbb{C}=\overline{\mathbb{R}}=\overline{\widehat{\mathbb{Q}}}, \textrm{usual case} \end{cases}$$

接着$p$进整数环$\mathbb{Z}_{p}$即是$p$进数域$\mathbb{Q}_{p}$的离散赋值环:

$$\mathbb{Z}_{p}:=\{x\in\mathbb{Q}_{p}\mid \left|x\right|_{p}\leq1\}.$$

3. Grothendieck's Theory

接下来,我们来回顾一下上世纪Grothendieck所做的工作。其实代数几何如今整体上能分成两个方向,一个是以Grothendieck发展的抽象理论为基础的方向,另一个是与微分几何结合主要研究复几何的方向(参考[14])。Grothendieck所做的工作当然远远不止上文所说的概形,还有étale cohomology(平展上同调), crystalline cohomology(晶体上同调), $l$-adic cohomology($l$进上同调), topos(拓扑范), motives, Grothendieck topology, Grothendieck universe等等。

除此之外,Grothendieck 还有三本被誉为代数几何圣经的著作,分别是EGA(Éléments de géométrie algébrique),SGA(Séminaire de géométrie algébrique)和FGA(Fondements de la Géometrie Algébrique),翻译成中文就是《代数几何原理》、《代数几何讨论班》和《代数几何基础》。

首先我们来说说Grothendieck著名的motives理论,该理论的哲学即是将所有的性质相似的上同调,诸如奇异上同调、德拉姆上同调、平展上同调和晶体上同调,统一起来。下面我们给出上同调的定义,该定义涉及到阿贝尔范畴。所谓的阿贝尔范畴,它的原型是阿贝尔群范畴,上世纪Grothendieck将其重要的性质抽象出来,只剩下足够计算同调代数的东西。

Definition 3.1. A cochain complex $\mathcal{C}= \{\mathcal{C}^{n},d^{n}\}$ in an abelian category $\mathfrak{U}$ is a collection of objects $C^{i},i\in \mathbb{Z}$ , and morphisms $d^{i} : C^{i} \rightarrow C^{i+1}$, such that $d^{i}\circ d^{i+1} = 0$. The morphisms $d=\{d^{i}\}$ are called the differential (or coboundary operator).

The $i$th cohomology object of the complex $\mathcal{C}$ is defined to be $H^{i}(\mathcal{C}) = \textrm{Ker }d^{i}/\textrm{Im }d^{i-1}$.

根据范畴的不同,我们可以定义上同调群、上同调模,接着就可以定义singular cohomology(奇异上同调)、de Rham cohomology(德拉姆上同调)、Galois cohomology(伽罗华上同调)、Čech cohomology (切赫上同调)等等。在集合论中,我们有类与集合的概念。所谓的类由所有享有共同性质的数学对象构成,但是它不一定是一个集合,如果它不是一个集合,我们称这个类是真类。接下来,我们给出Grothendieck universe 的定义,它是在上世纪由Grothendieck提出来的,用来避免不构成集合的真类。如果读者想要了解更多相关内容,可以参考[5], [6]

Definition 3.2. A Grothendieck universe is a non-empty set $\mathcal{U}$ that satisfied the following conditions:

  1. if $x\in \mathcal{U}$ and $y\in x$, then $y\in \mathcal{U}$.
  2. if $x,y\in \mathcal{U}$, then $\{ x,y\}\in \mathcal{U}$.
  3. if $x \in \mathcal{U}$, then $\mathcal{P}(x) \in \mathcal{U}$, where $\mathcal{P}(x)$ denotes the set of all subsets of $x$.
  4. if $(x_{i},i\in I)$ is a family of elements of $\mathcal{U}$ and $I \in \mathcal{U}$, then $\bigcup_{i\in I}x_{i} \in \mathcal{U}$.

4. Modern Mathematics

以上内容其实都已经是以前发展的理论了,基本上都是20世纪的内容,已经有点旧了。接下来,我们讲一下21世纪比较新的内容:Shinichi Mochizuki和Peter Scholze的工作。

Shinichi Mochizuki(望月新一)就是那位声称证明了abc猜想的数学家,我们习惯叫他为望月大神。他刚开始主要是做hyperbolic curve相关的研究的,后来他开始通过运用自己以前的研究成果来研究远阿贝尔几何(anabelian geometry)。远阿贝尔几何最初是Grothendieck提出来的一个宏伟的理论,如今它被望月新一进一步发展,构建了一个名叫宇宙际理论(Inter-universal Teichmüller Theory)的东西,用于证明abc猜想,可惜世界上没有多少数学家能够看得懂他的证明,因此关于他的证明主流数学界仍不认可。

不同的是,Peter Scholze的工作则更为主流数学界所接受,很多人都更愿意做Peter Scholze的方向。Peter Scholze就是那个国际奥林匹克数学竞赛拿金牌,高中开始学习研究生数学的数学家,很年轻。在他的博士论文中,他发展出了一个叫状似完备空间(perfectoid spaces)的新东西,成为了当代算术几何最具影响力的数学家之一。

4.1. Rigid Geometry

Peter Scholze 所做的perfectoid spaces与刚性几何(Rigid Geometry)有关,接下来我们将对刚性几何的部分内容做介绍。想要了解更多的读者请参考[3], [4]

首先我们需要研究非阿基米德的绝对值。对于与绝对值相关的valuation,在本文中我们将不予讨论。我们着重讨论非阿基米德的绝对值的特别之处。

Definition 4.1. A (non-archimedean) absolute value $\upsilon$ on a field $K$ is a map $\left| \cdot \right|$ : K $\rightarrow$ $\mathbb{R}_{\geq0}$, such that for all $x,y\in K$ the following conditions verified:

  1. $\left| x \right|$ = 0 $\Leftrightarrow$ $x=0$.
  2. $\left| xy \right|$ = $\left| x \right|$$\left| y \right|$
  3. $\left| x+y \right| \leq \max\{\left| x \right|, \left| y \right|\}$

Proposition 4.2. Let $x,y\in K$, we have $\left| x+y \right|$ = $\max\{\left| x \right|, \left| y \right|\}$, if $\left| x \right| \neq \left| y \right|$.

Proof. Without loss of generality, we assume $\left| x \right| < \left| y \right|$. Then $\left| x+y \right|$ $<$ $\max\{\left| x \right|, \left| y \right|\}$ =$ \left| y \right|$ implies

$$\ \left| y \right| = \left| (y+x)-x \right| \leq \max\{\left| x+y \right|, \left| x \right|\} < \left| y \right|$$

which is contradictory. So we must have $\left| y \right| = \left| y+x \right| = \max\{\left| x \right|, \left| y \right|\}$ as claimed.

通过绝对值,我们定义任意域$K$上的距离为$d(x,y) = \left| x-y \right|$,然后该距离诱导出$K$上的一个拓扑。有了$K$中任意两点的距离,根据非阿基米德的三角不等式,对于所有$x,y,z \in K$,我们可以得出:

$$d(y,z) \leq \max\{d(x,y),d(x,z)\}$$

根据命题4.2,该不等式两边相等,如果不等式右边的两个距离不相等。这意味着:在域$K$中的任意三角形,都是等腰三角形。更进一步,我们可以证出:域$K$中任意一个圆盘中的点都可以作为该圆盘的中心。因此,如果$K$中的两个圆盘有非空交集,那么它们就是共心的。下面我们给出证明。

Definition 4.3. For a centre $a\in K$ and a radius $r\in \mathbb{R}_{> 0}$, we define the disk without boundary to be the set $$D^{-}(a,r) = \{ x \in K\mid d(x,a)<r \}$$

And we define the disk with boundary to be the set $$D^{+}(a,r) = \{ x \in K\mid d(x,a)\leq r\}$$

Proposition 4.4. Each point of disk without boundary in K is the centre of the disk.

Proof. Assume that $a$ is the centre of a disk, $b$ is a point different from $a$. For any $x\in D^{-}(a,r)$, we have $$ d(x,b) = \left| x-b \right| = \left| (x-a)+(a-b) \right| \leq \max\{\left| x-a \right|,\left| a-b \right|\} < r $$

类似的,我们可以证明对于有边界的圆盘,其中的任意一点都可以是它的中心。

4.2 Perfectoid Geometry

接下来我们粗略地说一下,Perfectoid spaces, [4],这篇文章里面的一些内容,鉴于作者水平有限,不能一一详述。首先,perfectoid是perfect+oid,意思就是more or less perfect,类完美。

首先,我们回顾一下什么是完美域(perfect fields)。

Definition 4.5. Let $K$ be a field. We say that $K$ is perfect if either $K$ has characteristic $0$, or if $K$ has characteristic $p>0$, the Frobenius $$ \Phi:K\rightarrow K, x\mapsto x^{p}$$ is an isomorphism.

Perfectoid spaces这篇文章的动机源于以下Fontaine-Wintenberger的一个定理:

Theorem 4.6. The absolute Galois groups of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and $\mathbb{F}_{p}((t))$ are canonically isomorphic.

Remark 4.7.

$$\mathbb{Q}_{p}(p^{1/p^{\infty}})=\lim_{\substack{\longrightarrow \\ n>0}}\mathbb{Q}_{p}(p^{1/p^{n}})=\bigcup_{n>0}\mathbb{Q}_{p}(p^{1/p^{n}}).$$

$\mathbb{Q}_{p}(p^{1/p^{\infty}})$是一个特征0的域,它的剩余类域$\mathbb{F}_{p}$是特征$p$,这种域被称为混合特征的(mixed characteristic)。而$\mathbb{F}_{p}((t))$ 是一个特征$p$的域。意思是如果将所有$X^{p^{n}}-p\in\mathbb{Q}_{p}[X]$的根加到$\mathbb{Q}_{p}$里面,它会看起来像一个特征$p$的域$\mathbb{F}_{p}((t))$。想要更好地理解$\mathbb{Q}_{p}(p^{1/p^{n}})$是什么意思,可以参考$\mathbb{C}\cong\mathbb{R}(i)\cong\mathbb{R}[X]/(X^{2}+1)$这个例子。同时,我们有这样一个tower:

$$\mathbb{Q}_{p}\subseteq \mathbb{Q}_{p}(p^{1/p})\subseteq \mathbb{Q}_{p}(p^{1/p^{2}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{n}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{\infty}}).$$

定理4.6可以在更加一般的框架下研究,这就引申出了perfectoid fields。 首先,我们给出非阿基米德域的定义,它其实就是一个拓扑由一个非阿基米德绝对值生成的拓扑域。

Definition 4.8. A non-archimedean field is a topological field $K$ whose topology is induced by a non-trivial valuation of rank 1.

Definition 4.9. A perfectoid field is a complete non-archimedean field $K$ with residue characteristic $p>0$ whose associated rank-1-valuation is non-discrete and the Frobenius $\Phi:K^{\circ}/p\rightarrow K^{\circ}/p,x\mapsto x^{p}$ is surjective.

Example 4.10. The $p$-adic completion $\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}$ of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and the $t$-adic completion $\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}:=\mathbb{F}_{p}((t))((t^{1/p^{\infty}}))$ of $\mathbb{F}_{p}((t))(t^{1/p^{\infty}})$ are perfectoid fields.

$$\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}=\widehat{\mathbb{Z}_{p}[p^{1/p^{\infty}}]}[\frac{1}{p}]=(\lim_{\longleftarrow} \mathbb{Z}_{p}[p^{1/p^{\infty}}]/p^{n})[\frac{1}{p}],$$

$$\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}=\widehat{\mathbb{F}_{p}[t^{1/p^{\infty}}]}[\frac{1}{t}]=(\lim_{\longleftarrow} \mathbb{F}_{p}[t^{1/p^{\infty}}]/t^{n})[\frac{1}{t}].$$

Perfectoid field叫做类完美域,当它为特征$p$时,它是一个完美域。同时,这里有一个tilt的过程,它可以看成一个函子叫做tilt funtor:

$$K\mapsto K^{\flat}$$

将一个任意特征的perfectoid field打到一个特征$p$的perfectoid field。同时,我们有

$$K^{\flat}=\lim_{\substack{\longleftarrow \\ x\mapsto x^{p}}}K.$$

接着我们有了更加一般的定理,它推广了定理4.6。

Theorem 4.11. The absolute Galois groups of $K$ and $K^{\flat}$ are canonically isomorphic.

总之,这篇文章中,Peter Scholze提出一种框架,它能将任意特征的问题简化为特征$p$的问题,因为特征$p$往往更好研究,同时也有很多好的性质和结论。

References

  1. Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag New York, Inc., 1993.
  2. Robin Hartshorne, Algebraic Geometry, Springer, New York, NY, Springer Science+Business Media New York, 1977.
  3. Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  4. Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), pp. 245–313.
  5. Grothendieck with Artin, M. and Verdier, J. L. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Springer-Verlag Berlin Heidelberg, 1973.
  6. Pierre Deligne, Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Springer-Verlag Berlin Heidelberg, 1977.
  7. Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Springer-Verlag New York, 1997.
  8. Fredrik Meyer, Notes on algebraic stacks, https://blog.fredrikmeyer.net/uio-math, 2013.
  9. G. Everest and Thomas Ward, An Introduction to Number Theory, Springer-Verlag London, 2005.
  10. Loring W. Tu, An Introduction to Manifolds, 2nd ed., Springer, New York, NY, 2011.
  11. Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-552.
  12. Michael Artin, Allyn Jackson, David Mumford, and John Tate, Coordinating Editors, Alexandre Grothendieck, Notices of the AMS 51, 2016.
  13. Joe Harris and Ian Morrison, Moduli of Curves, Springer-Verlag New York, Springer Science+Business Media New York, 1998.
  14. Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley-Interscience; 1st edition (August 16, 1994), 1978.
  15. J.S. Milne, Algebraic Geometry (v6.02), www.jmilne.org/math/ , 2017.
  16. Glen E. Bredon, Sheaf Theory, Springer-Verlag New York, Springer Science+Business Media New York, 1997.
Comments

There is no comment, let's add the first one.

弦圈热门内容

揭秘宇宙的奥秘:大爆炸、暗物质、暗能量以及神秘的平行宇宙存在吗?

有过一段时间,你或许觉得自己手中的咖啡杯,心中的梦想,身边的人和物,都是独特而独一无二的。然而,当你看向星空时,你是否曾经想过,也许在另一个角落,另一个宇宙中的你,正在面临同样的问题,活在一个完全不同而又相似的世界中?这就是平行宇宙理论中我们要讨论的问题。这个问题或许曾在我们心中悄然滋生,然而科学家们已经在努力寻找答案。这个故事要从一颗原初的原子开始讲述。梅特勒的宇宙大爆炸理论描绘了一个宇宙的诞生过程。数十亿年前,一个比太阳还要巨大的、密度极高的原子在一场大爆炸中破裂,荡涤出今天宇宙的蓝图,铸造了我们眼前的一切。然而,这个理论仍有许多未解之谜,如大爆炸之前的世界,以及大爆炸的原因。当哈勃发现宇宙中的星系在距离我们越远,颜色就越偏红,他发现了宇宙正在膨胀——这便是著名的哈勃红移现象。这种膨胀快速而不间断,使得一切都变得愈加模糊,无法分辨。但闪耀在暗淡淡度之外的,是还未被触摸的暗物质和暗能量。这两者虽无法直接观察,但却在无形中塑造了宇宙的形状和运动轨迹。如果说宇宙是一场最伟大的烟火,那么我们也许只能欣赏到其中一小段的辉煌。就像无限宇宙理论的倡导者们所说,我们所处的宇宙可能只是一个更大无边无 ...

cover

如果一个人身体死了但大脑活在营养液中,是不是活在虚拟世界里?

在现代科幻电影的奇异世界中,常常会出现这样的场景:一个人的身体已经死亡,但大脑却被保存在营养液中,继续在虚拟世界里体验着生命。《黑客帝国》中的就是这样一种构想,人类的大脑通过电信号与计算机系统连接,生活在一个被编程的虚幻世界中。然而,这种幻想并非纯粹的娱乐创作,它也反映了人们对大脑与身体关系的深层思考。哲学家希拉里·普特南提出的“缸中之脑”假想,把这种思考推向了极致。他设想了一个邪恶科学家通过手术将人的大脑取出,放置在营养液中维持生命,再通过计算机程序向大脑输入信息,制造出一个人工的虚拟现实。在这个假想中,被操作的大脑仍然可以体验到生活的一切,但所有的感知和记忆都可能是虚假的。这样的假想引发了一个问题:如果一个人的大脑被置于这样的环境中,那他或她是否真的活在虚拟世界里?揭秘大脑的复杂运作机制要探讨这个问题,我们需要从大脑的运作机制入手。每个人体内都存在着一个错综复杂的神经系统,这个系统由神经纤维构成,包括各种神经组织,如大脑和脊髓。这些神经组织负责将神经信号传递给身体的各个器官,同时也将各个器官的信号传递回大脑和脊髓。正是通过这样的信号传递,我们才能感受到外部世界的各种刺激,并做出相应 ...

cover

最新发现:火星上有大量液态水,多到可覆盖整个火星,且水深1.6公里

多年来的探测数据表明,在火星表面存在着大量类似地球河道和河床的地形结构,其长度往往可达数百公里,明显是由液态水长时间侵蚀和冲刷而形成的,而火星表面的很多盆地和低洼地区,其边缘还存在着类似海岸线的特征。除此之外,在火星表面,还发现了广泛分布的水合矿物以及类似于地球上由水过程形成的沉积岩,这些分层岩石通常显示出交错层理等特征,被认为有水流过时形成的痕迹。所以科学家据此认为,在遥远的过去,火星表面曾经也存在由大量液态水形成的江河湖海,而那时的火星很可能也像地球一样宜居。然而我们都知道,现在的火星表面是一片干涸的荒芜世界,那么,火星上的水到哪里去了呢?对此,一个常见的观点就是,由于火星太小,其核心早早地冷却了,这会导致其磁场的消失,在没有了磁场的保护之后,火星的大气就被太阳风持续剥离,这导致了火星表面的气压显著下降,使得液态水无法在表面存在,于是水开始蒸发并被太阳风不断地“吹”走,而火星大气的变薄还导致了火星表面的温度急剧下降,于是剩余的液态水都冻结起来,形成了火星两极的冰盖或隐藏在火星地下的冰土之中。(↑火星北极的冰盖)可以看到,这样的解释是比较合理的,该观点也因此得到了较多的认同,所以人们 ...

cover

有感而发,给小猫咪讲讲康德

前言:某日某夜,路遇小猫,小猫两步一回头,最后谨慎地坐在我脚边蹭我,我兴致忽起,遂边投喂边给小猫讲起来康德1 给猫讲康德在【牛顿猫】和【莱布尼茨猫】发展了微积分后,猫界对自然哲学的 研究就突飞猛进,而大众对猫的【认识论】依旧停滞不前,基础不牢,则地动山摇,科学认知的大厦有摇摇欲坠的风险。此时的认识论两派打架,分别是以【莱布尼茨猫】为代表的【纯粹理性派】,和以【休谟猫】为代表的【经验派】。那时候【亚里士多德猫】主义派把知识判断分为两类,【分析的】和 【综合的】。【分析】意思的可以从主体对象上直接得到的,比如这句话“一 只聪明的小猫 ”,“聪明 ”这一个特性可以直接从我们的主体,也就是这整 句话分析得到,我们就会说“小猫 ”的特性是“聪明 ”;而【综合】则代表其包括了其他的经验性的东西, 比方说“小猫 ”的特性是“吃小鱼干 ”, 我们从“一只聪明的小猫 ”这句话里,得不出“吃小鱼干 ”这个特性,“小猫 ”和“吃小鱼干 ”这作为认识到的经验我们曾见过,会很自然地联系起来。那么猫如何认识这个世界的呢?当然是靠芝士(知识)! 一只小猫天生就会喝奶,它不需要任何感观经验,这叫【先天知识】,一只小猫 ...

光速存在极限是因为处理器有局限?

长期以来,物理学家一直在努力解释,为什么宇宙一开始就具备条件适合生命进化?为什么物理定律和常数,恰好是允许恒星、行星以及生命最终能出现的非常具体的数值?而让宇宙膨胀的那种力,暗能量,就比理论认为的要弱得多。实际应该是让宇宙物质全都聚集在一起,而不是像观察到的在膨胀撕裂。一个常见的答案是我们生活在一个无限多的宇宙中,即多重宇宙,所以我们不应该对其中至少有一个宇宙 会变成我们这个宇宙感到惊讶。但另一个看上去天方夜谭的答案,却越来越被重视,那就是我们的宇宙是被一个外在的计算机模拟出来的,这个计算机有人(或许是一个先进的外星物种)在微调各种参数。这个看上去很离谱的理论,目前已经得到信息物理学这门科学分支的理论支持。信息物理学认为时空和物质并不是宇宙的本质。相反,我们所处的物理现实,本质上是由信息比特组成的,而我们感受到的时空体验就是从这些信息比特中产生的。而所谓的温度,只是原子聚集在一起运动的另一种说法。从根本上说,没有一个原子具有温度。这极大地让科学家相信,我们的整个宇宙,实际上只是计算机模拟出来的事实,存在巨大可能性。不过,这个想法并不是最近才提出的。早在1989 年,传奇物理学家约翰·阿 ...

cover

共工怒触不周山并非传说,考古发现证据,专家:夏朝不是第一王朝

《列子·汤问》:“共工氏与颛顼争为帝,怒而触不周之山,折天柱,地维绝,天倾西北,故日月星辰移焉;得不满东南,故百川水潦归焉。共工是中国古代神话传说中的水神。因未能与颛顼争夺皇位,愤而推倒周围群山,导致天竺覆灭。但实际上,共工并不是一个个体,而是古代共工强大部落的人格化。据《左传》记载,共工家早在黄帝时代就是一个善于治水的部落。然而在尧舜时期,共工一家却突然成为天下诸侯的祸害,被舜帝列为天下“四害”。与三苗一起被华夏部落联盟驱逐,共工一家被迫从黄河迁徙到幽州。"“在幽州共事”也得到考古证实。尧舜生活在中国原始社会末期的一个龙山文化时代,分为中原龙山文化和山东龙山文化两种类型,分别代表居住在中原的炎黄部落(尧舜)的后裔和山东东夷人的后裔。中原龙山文化和山东龙山文化之间的豫北窄黄河地带还有一种特殊的文化类型:后港二期文化。后港二期也属于龙山文化体系,但有自己的特点。但在夏初龙山文化向二里头文化过渡的过程中,豫北后港二期文化突然消失,而辽西则突然出现了夏家店低级文化,与燕山南部同期考古类型完全不同,但与后港二期文化有传承关系。这说明在姚舜禹部落向夏朝过渡的过程中,居住在豫北的一个部落迁徙到辽西 ...

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved