·

潘禺:谷歌量子计算芯片给了国内产业界紧迫感

发布时间:2024-12-29 22:32:50阅读量:10
普通文章
转载请注明来源

【文/观察者网专栏作者 潘禺】

12月10日,谷歌重磅推出量子计算芯片“Willow”,在公关宣传攻势下,马斯克送上了“Wow”,奥特曼也发来了贺电。

Willow是一款拥有105个物理量子比特的量子芯片,亮点在于其惊人的计算速度和错误校正能力。据报道,Willow能在不到5分钟的时间内完成一个标准计算任务,而这个任务如果交给全球最快的超级计算机,可能需要超过10-25年,这个数字甚至超过了宇宙的年龄。

Willow的另一个成就是其指数级减少错误率的能力。随着量子比特数量的增加,错误率通常会指数增长,但Willow通过先进的量子纠错技术,实现了错误率的指数级降低。每当晶格从3x3增加到5x5,再到7x7时,编码错误率就会以2.14的倍率降低。这种对逻辑错误的潜在抑制为运行有纠错的大规模量子算法奠定了基础。

Google Quantum AI团队的工作环境

权威专家的反应

量子计算的教主和旗手,美国计算机科学家Scott Joel Aaronson在他的博客也做了一些点评,尽管整体上比较积极乐观,但话里话外还是有一些玄机。

比如,Aaronson要读者明确,进步大体上符合多数人的预期:

对于过去五年一直在关注实验量子计算的人来说(比如说,从2019年谷歌的原始量子霸权里程碑开始),这里没有什么特别的震惊。自2019年以来,谷歌在其芯片上的量子比特数量大约翻了一番,更重要的是,将量子比特的相干时间提高了5倍。与此同时,他们的2量子比特门保真度现在大约是99.7%(对于受控-Z门)或99.85%(对于“iswap”门),相比之下2019年是~99.5%。

他谈到最重要的是量子容错跨过了门槛,但离“真正的”容错量子比特还有距离:

从科学上讲,头条结果是,随着他们增加表面码的大小,从3×3到5×5到7×7,谷歌发现他们的编码逻辑量子比特存活时间变长而不是变短。所以,这是一个非常重要的门槛,现在已经被跨越了。正如Dave Bacon对我说的,“现在形成了漩涡”——或者,换个比喻,30年后,我们终于开始触及量子容错的龙尾,这条龙(一旦完全唤醒)将允许逻辑量子比特被保存和操作几乎任意长的时间,允许可扩展的量子计算。话虽如此,Sergio Boixo告诉我,谷歌只有在能够以~10^-6的错误进行容错的两量子比特门(因此,在遭受一个错误之前,大约可以进行一百万次容错操作)时,才会认为自己创造了一个“真正的”容错量子比特。我们还离这个里程碑有一段距离:毕竟,在这个实验中,谷歌只创建了一个编码量子比特,甚至没有尝试在其上进行编码操作,更不用说在多个编码量子比特上了。

Aaronson也谈到了谷歌这次秒杀超算10^25年的“量子霸权实验”:

谷歌还宣布了在其105量子比特芯片上进行新的量子霸权实验,基于40层门的随机电路采样。值得注意的是,他们说,如果你使用目前已知的最佳模拟算法(基于Johnnie Gray的优化张量网络收缩),以及一台百亿亿次超级计算机,他们的新实验如果不考虑内存问题,需要大约3亿年才能在经典计算机上模拟,或者如果考虑内存问题,需要大约10^25年(注意,自大爆炸以来只过去了大约10^10年)。

他指出这里“10^25年”结果的最大问题,也就是谷歌量子芯片的计算结果没有直接的验证。他担心谷歌没有给予足够的关注:

由于同样的原因(据大家所知),经典计算机模拟这一量子计算将花费约10^25年,因此经典计算机直接验证量子计算结果也需要约10^25年!(例如,通过计算输出的“线性交叉熵”得分)。因此,谷歌的新量子霸权实验的所有验证都是间接的,基于较小电路的外推,而这些电路是经典计算机可以实际检查结果的。需要明确的是,我个人没有理由怀疑这些外推结果。但是,对于那些奇怪为什么我多年来一直痴迷于设计高效验证的近期量子霸权实验的原因:这就是原因!我们现在深陷于我之前警告过的不可验证的领域。

以色列数学家和计算机科学家,量子计算怀疑论者Gil Kalai则在博客上写道:

我们还没有研究Google Quantum AI的这些特定声明,但我的一般结论适用于它们:应谨慎对待 Google Quantum AI 的声明(包括已发布的声明),尤其是那些具有特殊性质的声明。这些说法可能源于重大的方法论错误,因此,可能更多地反映了研究人员的期望,而不是客观的科学现实。

Gil Kalai还在这篇博文中谈到了量子计算炒作和比特币的问题:

当2019年谷歌的量子霸权主张发布(或者更确切地说是泄露)时,有很多说法认为这意味着量子计算机就在附近,因此比特币所需的密码学将是可破解的,比特币将失去其价值。我通常不介意“炒作”,因为它反映了科学家对他们工作的热情和公众对科学努力的兴奋。然而,就谷歌而言,需要谨慎行事。例如,在2019年宣布“霸权”之后,比特币的价值在短短几天内(2019年10月24日左右,经过一段时间的稳定)从大约9,500美元跌至约8,500美元,给投资者带来了超过100亿美元的损失。比特币今天的价值约为100,000美元。此外,谷歌的断言可能对其它量子计算工作提出了不切实际的挑战,并鼓励了不受欢迎的科学方法的文化。

跨越量子纠错的门槛

正如Aaronson所说,这次值得称道的,不是无法直接验证的“量子霸权”实验,而是量子容错跨过了门槛。

对于实用的量子计算机的主要困难,和对其中炒作的重新审视,心智观察所此前在《美国开始重新审视量子计算机,这对中国很重要》一文中已经做了详细介绍。

这次Google Quantum AI团队在《自然》杂志上发表的论文,其重要成果是跨过了量子纠错的阈值,这又是怎么回事呢?

构建量子计算机的研究人员面临的中心挑战,是如何用不完美的部件构建出完美的机器。他们的基本构建块,也就是量子比特,对外界干扰极其敏感。今天的原型量子计算机过于容易出错,无法做任何有用的事情。

上世纪90年代,研究人员为克服这些错误奠定了理论基础,称为量子纠错。关键思想是诱使一组物理量子比特协同工作,作为一个单一的高质量“逻辑量子比特”。然后计算机将使用许多这样的逻辑量子比特进行计算。他们通过将许多有缺陷的组件转化为较少的可靠组件来制造那台完美的机器。

这种计算的炼金术也有局限,如果物理量子比特太容易失败,纠错反而会适得其反。也就是增加更多的物理量子比特会使逻辑量子比特变得更糟,而不是更好。但如果错误率低于特定阈值,平衡就会倾斜:你增加的物理量子比特越多,每个逻辑量子比特就变得越有弹性。

这次谷歌团队终于跨越了这个阈值。他们将一组物理量子比特转化为一个逻辑量子比特,随着他们向该组添加更多的物理量子比特,逻辑量子比特的错误率急剧下降。

考虑一台经典计算机,信息表示为一串比特,0或1。任何随机的故障,如果翻转了比特的值,都会导致错误。为了防范错误,可以将信息分散到多个比特上,每个0重写为000,每个1重写为111。如果一组中的三个比特不是全部具有相同的值,你就会知道发生了错误,多数投票将修复错误的比特。但如果三元组中的两个比特同时出错,多数投票将返回错误的答案。

如果增加每个组中的比特数量,比如五比特,虽然这种更大的代码可以处理更多的错误,你也引入了更多可能出错的方式。只有当每个单独比特的错误率低于特定阈值时,净效应才是有益的,比如五比特版本可以容忍每个组中的两个错误。

在量子世界中,情况更加棘手。量子计算中的每一步都是另一个错误源,纠错过程本身也是如此。更重要的是,没有办法在不不可逆地干扰它的情况下测量量子比特的状态。所以,起初许多研究人员认为量子纠错是不可能的。

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

作为一个年轻的数学工作者,你们是如何独立于导师选定问题的?

知乎提问:感觉有意思的我做不动,我会做的又无趣(且无人关注)。那请问你们是如何自己选定一个有意思且做的动的问题的?我的回答:想要找问题,首先需要阅读很多相关的文献,但是这一步其实很多人都会做了,他们的问题是哪怕读了再多的文献,似乎也不知道有啥问题可做。其实在我看来原因无非那么几个第一是他们自以为自己掌握了正确的学习方法,看过的文献每一个细节都彻底弄懂弄透了,实际上他们连自己学的东西都没搞明白;第二是他们好高骛远,瞧不起一些比较基本的小问题,却不知道很多重要且有趣的理论往往来自于不经意间一些最简单的问题;第三就是科研能力问题了,这方面要展开太多可讲了,如数学成熟度不够、计算能力不足导致无法将脑海里的理论实现,或是想象力不足无法构想出一个一般性的理论,等等。这三点能做好,基本上就能脱离导师,独立自主做出研究成果了。其中第三点是最体现一个人数学天赋的地方了,不过其也是建立在第一点跟第二点的基础之上的。关于如何学习达到research level的程度,不是一两句话就能简单讲完的,可以参考我之前的文章和帖子,其实只要把第一点做好,且做到极致,第二点只要你调整好自己的心态就能做到。想学好数学不是 ...

基础数学几何方向应该如何学习?

前辈们好,本人是一名大二数学系学生,目前大致了解点集拓扑基本概念(但还没怎么做题),代数拓扑看过基本群和同伦型,复变和抽代这学期正在学。之所以问这个问题是因为之前看到中科大梁永祺老师的主页看到了这样一句话:让我感觉非常奇妙,也想见识一下这精华的部分(希望在大四毕业前能做到吧!😭),也激发了我学习代数与几何方向的想法。其中代数方向其实学习路径了解的差不多了,大致就是学完抽象代数后同调、交换和lie代数都可以学了,但几何方向还不甚了解,很多几何方向的课学校都是大三大四才有,甚至开不出来,因此只能自行学习。这个问题其实之前也问了不少前辈,但发现每个人的学习路径(有的是从微分几何上同调那边学,有的是先接触的代数拓扑等)都不一样,而几何方向又十分繁杂,理不清学习顺序,手头上有很多纸质书、电子书、网课等也无从下手;或者有些内容可能比较难且深入某个具体方向,以后不做这个方向可能根本不会用到,不知道该学多少合适。所以想多听取一点建议以便自己之后逐一尝试,例如:学习路径、参考书目、课程视频等等。谢谢各位!😘

学习应该先追求深度还是广度?

知乎提问:学习应该先追求深度还是广度?我的回答:在我看来应该先追求广度,有了一定的广度再开始追求深度。因为选择深入哪个领域进行学习,是先需要广泛涉猎,对各个领域先有个初步的理解,接着再在这些领域中挑选一个进行深度学习。我当初学数学的时候,也是先大量的看各个数学分支的教材,广泛涉猎。然后挑选其中几个感兴趣的领域:微分几何和代数几何,开始着重学习。最后有了一定的数学成熟度,才开始全力追求深度,决定不仅是做代数几何,而且是代数几何中的算术几何。因此,比起一上来就追求深度,我认为先追求广度更加有效。因为任何一个领域都有成熟度这个概念,你没有一定的成熟度,过早的追求深度看似少走了很多弯路,但不过是拔苗助长。

关于目前各大平台引流实践的总结:如今各大平台都在封锁流量,在这么一个垄断的大背景下,小平台只能在夹缝中生存......

本文修改自我今天发推的几篇内容。以后我推特也懒得发再英文了,之前一直想搞国际化,国际化个der,我之前一直听信所谓的国外好赚钱的言论。其实真的尝试过才知道,国外也封锁你。现在弦圈的注册用户和流量仍然都是来自国内的,全靠社媒支撑着,SEO零流量,去tm的SEO,以后我也学小红书那样,把所有搜索引擎给屏蔽掉。 现在大家都在封锁自己的流量,不让你将流量引走,推特更是如此,发外链几乎零点击。现在各大社交平台,对引流管得最宽的唯有知乎了,可以给你随意发外链,而且对流量影响不大。 其他平台,如小红书、公众号,连外链都不能发,你只能发文本链接,公众号倒是可以填那个阅读原文,但谁会点? 不过即便是知乎,你发链接也仅仅只是为了引流罢了,知乎的外链有跳转页面,实测相当于屏蔽SEO。所以想要靠知乎发外链搞SEO的省省力吧,用处不大,而且外链本身就是引流的价值大于SEO,与其费时费力搞SEO,不如好好运营社媒。而在知乎上疯狂发外链引流,也不是高枕无忧的。偶尔在某些问题下回答,会引来某些无聊的人的恶意举报,一举报一个准,申诉都没用。 像那种“有什么有趣的网站推荐”、“有什么有深度的网站”,看似绝佳的网站宣传的问 ...

Charles Rezk拓扑学notes:Compactly Generated Spaces

本notes主要讲的是拓扑学中$k$-spaces与$k$-Hausdorff space的相关概念,之所以保存这份notes是因为我当初学习高阶范畴的时候,刚好需要用到这些概念。比如说,无穷范畴的定义就需要用到他们:A topological category is a category which is enriched over $\mathcal{C}\mathcal{G}$, the category of compactly generated (and weakly Hausdorff) topological spaces. The category of topological categories will be denoted by $\mathcal{C}at_{top}$.而抛开它与无穷范畴的联系,仅仅考虑它在拓扑学本身的意义,我觉得这也是本拓扑学方面有趣的notes,不仅是因为有趣的概念如$k$-空间、$k$-豪斯多夫空间,还有紧致生成的空间,还包括一些有趣的结论。总之,对高阶范畴、或者更深入的拓扑学感兴趣的人,可以看看。

点集拓扑求救

以及有没有推荐的点集拓扑教材

我翻译了Wiki、nLab、Stack Project的部分条目,以及一些教材中的定义,全放到了数学百科中

一两个月前,网站浏览人数比较少的时候,我也比较空闲,因此花了一些时间翻译了国外Wiki、nLab、Stack Project的部分条目,同时,我还将一些教材中的定义以及少部分自己写的英文notes中的定义翻译成了中文。然后我将这些翻译好的内容全都放进了数学百科中。现在因为新建了好几个子圈子,我也陆续将这些词条分门别类放进了不同的子圈。我之所以会翻译这些东西,一来是因为中文互联网的数学资源属实是过于稀缺了,每个学数学的人想要更好的发展都离不开英语这一关。但是总有人对数学感兴趣却英语不好,这也意味着有一部分人会欣赏不了英文的一些美妙的数学。二是因为词条是可以插入到文章里的,这会方便看文章的人快速查看相关术语的意思,所以在弦圈里多放些词条不仅有利于网站内容更丰富,而且能让学习交流变得更加顺畅。下面我整理一下我具体翻译了哪些词条,其实也不是很多。主要问题是翻译数学内容本身并不耗时间,真正耗时间的是输入Latex代码😅,即便我写数学好几年了,Latex也早就熟练运用,但我还是感觉在写数学的过程中Latex的输入占用了过多时间。层预层局部赋环空间赋环空间概形凸秩$p$-可除群函数向量向量空间反同态 ...

陈省身微分几何经典教材《微分几何讲义》

一说到陈省身经典的微分几何教材《微分几何讲义》,就勾起我很多回忆。这本书是我初三时期入门微分几何的教材,虽然相比于Loring W Tu微分几何经典入门教材:An Introduction to Manifolds的教材没那么好理解,但是却比王幼宁的《微分几何讲义》更加的友好。我当时真的挺喜欢陈省身的教材的,虽然以我如今的水平看,当时的我并没有真正的看懂这本书,但这是我微分几何的启蒙书。我人生中看的第一本微分几何的书是王幼宁的《微分几何讲义》,但是我虽然很有兴趣,但却没能读下去,因为开篇就直接看不懂。而陈省身的《微分几何讲义》至少我能读下去,不至于开篇就直接来那么难的东西,我也是靠这本教材知道了很多微分几何的重要概念。我到高一还在看陈省身这本教材,直到后来高二为了读懂Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis,我不得不看自己当时嫌弃的Loring W Tu的An Introduction to Manifolds,才打开了新世界,原来还是这么好看的微分几何入门教材,Loring W Tu的书确实比陈 ...

初中生如何自学数学?

知乎提问:我想这样子自学数学?纯兴趣爱好。我想从高中数学开始自学,用教材帮这本教辅书自学。然后学完高中后整理一下初等数学的知识。是不是就可以开始自学高数了?现在我打开高数好多证明题和不等式都不会做。然后把高等数学,数学分析,线性代数,高等代数,概率论与数理统计,复变函数与积分变换,实分析,复分析,泛函分析,抽象代数,代数几何,长微分方程,偏微分方程,微分几何都学完。大致就是这样的人生规划,初等数学学透了是不是就可以理解学习高等数学了?我的回答:我觉得按部就班的按顺序学习没多大意思,我初三的时候是先把导数、积分这些高中最难但却是微积分最基本的概念“学懂”,然后才学别的比较基础的概念如集合。原因无它,就是因为当时这些更感兴趣。因此与其纠结于把什么学透了再来理解什么,不如换成先尝试理解什么,理解不了再来理解什么。我初三的时候除了学会了导数、积分、加速度这些高中数学、物理的概念,但也没太过深入。顶多再学了个正余弦定理拿来应付中考。我从初中开始养成的习惯就是,对什么感兴趣就直接学它,学不懂再看其他的,因此我初中的时候还直接学了范畴的定义(只是看懂了表面的定义)。直到初三升高一的假期,我才买了高中 ...

语奥中的数字谜研究(一) 基础数词

语奥中的数字谜中有许多技巧,如果纯靠推理难度很大。系列文章将介绍数字谜技巧,每篇文章都无限期更新。第一篇文章,让我们走进基础数词。基础数词,顾名思义,就是一个语系中各个语言基本相同的数词。基础数词的特点就是稳定性,以至于可以帮助我们快速确定题目中一至几个单词的意思。以下举一些常见语系的例子来说明基础数词的作用。1、尼日尔(大西洋)-刚果 语系  $(a)ta=3$例题:2023 IOL T5  $taanre=3$$1.be ŋ jaaga=20 \rightarrow bee-x=20*x$$2.taanre=3 \Rightarrow ŋ kwuu \; x=80*x $$3.baa-y=y+5$$4.kampwoo=400 \Rightarrow kampwɔhii \; z=400*z$2、汉藏语系 $sam=3$$nga=5$例题:2024 APLO T5 $as ɣm=3$$pungu=5$