·

雪的不遇者

发布时间:2024-12-07 13:25:45阅读量:97
普通文章
转载请注明来源

作为过来人,迎接新客,咳嗽声
总在暗地里起伏,瓷勺跌在了地上
和空气一样冷淡,我的第二个爱人
忘记了今天是什么名字,书啊
迷惘的盐,是否意味我站在早晨之外
向你们投来无主的目光,那颗心
早晚都会走,像以前一样
寻章摘句,获得古代传承的快感
当一回宾客,接触那些表象的伪装
丰富的伪装,六点钟的爱情喧哗
这就是我们的日子,我们定义了爱
既然你不存在,我同意你的消失
在我们谈话的节奏趋于平稳之后,公交
也已驶来,多好的机会,我想象着
网状碎片藏在脸颊里,人
总在落雪之后独立,而你不能独立

我们去西伯利亚的天空,俄罗斯的
忧郁丛生,深灰色必将成为主的语言
一点一滴,在我的血脉里横流,
小人曾梦忆,却不知城市有多衰老
霜花,彩灯,麦克风,只占世界
的诸多分之一,你总爱权衡
可秤怎么能装下喜欢走丢的心?
还没到来,远山也未拾起衣冠
我们只是一个相册,城市深陷其中
反复圈定,养一头温良的房子
接纳雪的受难,你一直都很坚定
这些如同名字一样模糊的骗局
引诱我们在云层里分崩离析

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

记录一下知乎问题《你的编程能力从什么时候开始突飞猛进?》

自从我为了完成毕设而开始全栈写网站,我的编程能力就跟打了鸡血一样,我做梦都没想到自己居然能写出一个像样的网站 弦圈 - 找到属于你的圈子 (manitori.xyz)(不喜勿喷)。原本我是个对编程一窍不通的人,我只对数学感兴趣,对编程可谓是不屑一顾,每次上编程课,我都在下面摸鱼看数学的内容。课后作业以及大作业,要么是CV缝合弄好的,要么就是等别的同学写完直接拿一份抄来应付的。直到后来,我得知毕业的时候只能写毕业设计,不能写纯数学方面的毕业论文,我感觉天都塌了。在距离答辩还有一年的时间里,我某天突然突发奇想的想找些项目来写写玩玩,于是就是梦开始的地方。我第一次接触到了开发网站这个东西(虽然这玩意已经存在很多年了),知道了Vue.js,接着知道了用Python可以做后端,然后就开始上手写个前后端分离的网站。刚开始我也只是随便写写,能应付得了毕设就得了。可是写着写着,我发现自己对编程越来越感兴趣,同时也越写越顺手、越熟练。然后我就开始没日没夜的写,最后经过六个月的开发,第一个网站 弦圈 - 找到属于你的圈子 (manitori.xyz) 于今年4月4日终于上线了。关于编程,我感觉是只有你真正 ...

我们的宇宙并不是由纯数学构成的

在理论物理学的前沿,许多最流行的想法都有一个共同点:它们都从一个数学框架开始,这个框架试图解释比我们目前流行的理论更多的东西。我们目前的广义相对论和量子场论框架在它们所做的事情上很出色,但它们并不是万能的。它们从根本上是不相容的,不能充分解释暗物质、暗能量,也不能充分解释为什么我们的宇宙充满了物质而不是反物质,以及其他谜题。数学确实使我们能够定量地描述宇宙,如果应用得当,它是一种非常有用的工具。但宇宙是一个物理实体,而不是数学实体,两者之间有很大区别。这就是为什么单靠数学,我们永远不足以得出万物的基本理论的原因。16 世纪最大的谜团之一是行星如何以逆行的方式运动。这可以通过托勒密的地心模型(左)或哥白尼的日心模型(右)来解释。然而,要获得任意精度的细节需要我们在理解观察到的现象背后的规则方面取得理论进展,这导致了开普勒定律和牛顿的万有引力理论。大约 400 年前,一场关于宇宙本质的争论正在展开。几千年来,天文学家一直使用地心模型准确描述行星的轨道,在这个模型中,地球是静止的,其他所有物体都围绕着它旋转。借助几何数学和精确的天文观测——包括圆、等距圆、均轮和本轮等工具,天体轨道的精确数学 ...

为什么可能没有体积的量子所组成的物质却有体积?

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力 ...

Loring W Tu微分几何经典入门教材:An Introduction to Manifolds

Loring W Tu的微分几何入门教材An Introduction to Manifolds,中译名为《流形导论》。这本教材十分适合对微分几何感兴趣的萌新小白作为入门教材,想当年高二的时候,我就是因为看Jürgen Jost的Riemannian Geometry and Analysis看不懂,转而看Loring W Tu的An Introduction to Manifolds补充基础。Loring W Tu的书可以说非常对我胃口,这本书首先内容完备,把微分几何所有重要的基础概念给你讲一遍,而且语言简洁明了、思路清晰、通俗易懂。初三到高中时期,我看过不少微分几何的教材,包括陈省身的《微分几何讲义》,最后还是Loring W Tu的An Introduction to Manifolds让我真正学懂了微分几何😄。本教材从最基础的欧几里得空间光滑函数开始讲起,并不需要太多的前置知识即可开啃😁,只需要有大学本科数分高代的一些基础即可。而且其中的数学英文也并不需要太高的水平,因此也适合初步开始读英文文献的小白用于锻炼自己的英文数学阅读能力。Loring W Tu除了这本流形导论,还有一 ...

波尔兹曼大脑:宇宙中漂浮着至少7万5千亿亿亿个意识体

在这个广袤无垠的宇宙中,我们总爱幻想自己独一无二,是万物之灵。但你知道吗?根据某个奇妙的科学理论,你、我,甚至整个地球,可能都只是宇宙中随机“涨落”出来的一个意识体——没错,这就是让人脑洞大开的“玻尔兹曼大脑”假说!熵增定律:宇宙为何越来越“乱”?你的房间如果不打扫,是不是会越来越乱?这就是“熵增定律”在生活中的体现。简单来说,熵就是系统混乱程度的量度,而熵增定律则告诉我们,一个孤立系统的熵总是趋向于增加,直到达到最大化,也就是系统变得最混乱。宇宙,作为一个巨大的孤立系统,按理说也应该遵循这一法则。但奇怪的是,我们观测到的宇宙,似乎是从一个极其有序、熵极低的状态开始的。这,是为什么呢?玻尔兹曼的“脑洞”:宇宙其实是个“随机播放器”?这时,奥地利物理学家路德维希·玻尔兹曼登场了。他提出,熵增定律其实是统计性的,就像抛硬币,虽然正面朝上的概率是50%,但在无限次抛掷中,正面和反面出现的次数会趋于相等。同样,宇宙在大部分时间处于高熵态,但无限的时间尺度上,偶尔也会有“小概率事件”发生,即熵的随机涨落导致低熵态的出现。换句话说,我们现在所看到的这个有序、低熵的宇宙,可能只是一次“宇宙级”的随机 ...

Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes

在上帖Loring W Tu微分几何经典入门教材:An Introduction to Manifolds中,我提到高中时期,我为了看懂Jürgen Jost的几何分析教材Riemannian Geometry and Analysis,转而看Loring W Tu的An Introduction to Manifolds以及Differential Geometry Connections, Curvature, and Characteristic Classes。这本教材可以说是An Introduction to Manifolds的后续,建议先看一下An Introduction to Manifolds有了流形的基础,再看这本Connections, Curvature, and Characteristic Classes。本书开始就直接先从黎曼流形开始讲起,接着就讲曲率、联络这些微分几何进阶的重要基本概念。这也是为什么当初我会选择看这本书,因为这些内容刚好有助于我理解Riemannian Geometry and Analysis这本教材的内容(记得当时看到测地线就看不 ...

Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis

这本书是几何分析方面的入门教材,该教材先从最基本的黎曼流形讲起,然后逐步深入到李群和向量丛,接着到联络与曲率,基本上覆盖了几何分析很多重要的基础概念。这本书需要有一定的微分几何基础以及分析、李群等相关领域的基础,初学者谨慎使用。我高中的时候,就是对这本书的内容感兴趣,想要尝试理解,结果看到测地线就不懂了,接着后面看了点李群和向量丛就没再看了。建议先读Loring W Tu的两本微分几何教材Loring W Tu微分几何经典入门教材:An Introduction to Manifolds和Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes,有了一定的基础再专研Jürgen Jost的这本教材。我毕竟不是做微分几何的,所以关于这方面的就不说太多了。

素数在整数整环中还是素的吗?

我的提问:一个整环$R$中的元素$p$是素的,如果$p$不是零或者一个单元,并且$p|ab$意味着$p|a$或者$p|b$(等价的$ab\in Rp$意味着$a \in Rp$或者$b\in Rp$)。一个整环$R$的元素$q$是不可约的,当$q$不是零或者一个单元,并且$q = ab$意味着$a$或$b$是一个单元。那么素数在整数整环中是素的吗?然后素数都是不可约的吗?回答1:这两个问题的都是对的。根据基础数论的事实,$\pm 1$是唯一可逆的整数,除$\pm 1$以外的整数可以唯一地表示为不同素数的乘积加上$\pm$,每个素数的幂都是正整数,这两个结果都很容易得到。回答2:素数在整数整环中既是素的,也是不可约的。根据定义,它们就是不可约的。为了证明它们是素的,请回顾一下欧几里得算法,该算法用于找到两个整数的GCD(并同时证明任意两个整数都有一个在等价意义下唯一的GCD,其中并不涉及素数的分解)。根据欧几里德算法可以得出,如果$d=\gcd(a,b)$对两个整数$a,b\in\mathbb Z$,则存在整数$u,v\in\mathbb Z$使得$d=ua+vb$。(贝祖特性。)现在, ...