·

Mathematical analysis notes

发布时间:2024-07-11 21:02:58阅读量:464
学术文章
·
笔记
转载请注明来源

1. Mean value theorems

Theorem 1.1. ($\color{red}{\textrm{Rolle's Theorem}}$) Let $f$ be a function that satisfies the following conditions:

  1. $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on the ${\color{orange}{\textrm{closed}}}$ interval $[a,b]$.
  2. $f$ is ${\color{Cyan}{\textrm{differentiable}}}$ on the ${\color{orange}{\textrm{open}}}$ interval $(a,b)$.
  3. $f(a) = f(b)$

Then there exists $\zeta\in(a,b)$ such that $f'(\zeta) = 0$.

Theorem 1.2. ($\color{red}{\textrm{The Mean Value Theorem}}$) Let $f$ be a function that satisfies the following conditions:

  1. $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on the ${\color{orange}{\textrm{closed}}}$ interval $[a,b]$.
  2. $f$ is ${\color{Cyan}{\textrm{differentiable}}}$ on the ${\color{orange}{\textrm{open}}}$ interval $(a,b)$.

Then there exists $\xi\in[a,b]$ such that $$ f'(\xi) = \frac{f(b)-f(a)}{b-a} $$ or, equivalently, $$ f(b)-f(a)=f'(\xi)(b-a) $$

Theorem 1.3. ($\color{red}{\textrm{Cauchy's Mean Value Theorem}}$) Suppose that the functions $f$ and $g$ are ${\color{Cyan}{\textrm{continuous}}}$ on $[a,b]$ and ${\color{Cyan}{\textrm{differentiable}}}$ on $(a,b)$, then there exists $\varsigma\in (a,b)$ such that $$ (f(b)-f(a))g'(\varsigma) = (g(b)-g(a))f'(\varsigma) $$

If, in addition, $g(a)\neq g(b)$ and $g'(\varsigma)\neq 0$, this is equivalent to: $$\frac{f'(\varsigma)}{g'(\varsigma)} = \frac{f(b)-f(a)}{g(b)-g(a)}.$$

Theorem 1.4. ($\color{red}{\textrm{Mean Value Theorem For Integrals}}$) If $f$ is continuous on $[a,b]$, then there ${\color{blue}{\textrm{exists}}}$ a number $\varepsilon$ in $[a,b]$ such that $$ \int_{a}^{b}f(x)dx = f(\varepsilon)(b-a)$$

Definition 1.5. The ${\color{DeepPink}{\textrm{mean of a function}}}$ over the interval $[a,b]$ is $$ f(\xi)=\frac{1}{b-a}\int_{a}^{b}f(x)dx $$

Theorem 1.6. ($\color{red}{\textrm{The Fundamental Theorem Of Calculus}}$) If $f$ is ${\color{Cyan}{\textrm{continuous}}}$ on $[a,b]$, then the function $$ \Phi(x)=\int_{a}^{x}f(t)dt $$ is ${\color{Cyan}{\textrm{differentiable}}}$ on $[a,b]$ and its ${\color{orange}{\textrm{derivative}}}$ is $$ \Phi'(x)= \frac{d}{dx}\int_{a}^{x}f(t)dt = f(x) \  \ (a\leq x\leq b).$$

2. The maximum and minimum of a function

Definition 2.1. Let $f$ be a function, and $\zeta$ a number in its domain. Then the number $f(\zeta)$ is a

  1. ${\color{red}{\textrm{local maximum}}}$ value of $f$ if $f(\zeta)\geq f(x)$ where $x$ is in a ${\color{orange}{\textrm{neighborhood}}}$ of $\zeta$.
  2. ${\color{red}{\textrm{local minimum}}}$ value of $f$ if $f(\zeta)\leq f(x)$ where $x$ is in a ${\color{orange}{\textrm{neighborhood}}}$ of $\zeta$.

Definition 2.2. Let $f$ be a function, and $\zeta$ a number in its domain $\mathds{D}$. Then the number $f(\zeta)$ is a

  1. ${\color{red}{\textrm{absolute or global maximum}}}$ value of $f$ if $f(\zeta)\geq f(x)$ for all $x\in\mathds{D}$.
  2. ${\color{red}{\textrm{absolute or global minimum}}}$ value of $f$ if $f(\zeta)\leq f(x)$ for all $x\in\mathds{D}$.

Definition 2.3. The ${\color{magenta}{\textrm{maximum and minimum values}}}$ of $f$ are called ${\color{magenta}{\textrm{extreme values}}}$ of $f$.

Remark 2.4. A ${\color{blue}{\textrm{Stationary point}}}$ of $f$ is a point $\zeta$ where $f'(\zeta) = 0$. A ${\color{blue}{\textrm{critical point}}}$ of $f$ is a point $\delta$ such that $f'(\delta) = 0$ or $f'(\delta)$ does not exist. The value of the function at a critical point is called ${\color{blue}{\textrm{critical value}}}$.

Theorem 2.5. ($\color{magenta}{\textrm{Fermat's Theorem}}$) If $f$ has a ${\color{orange}{\textrm{local maximum}}}$ or a ${\color{orange}{\textrm{local minimum}}}$ at $\xi$ and if $f'(\xi)$ exists, then $f'(\xi) = 0$.

Proposition 2.6. ($\color{magenta}{\textrm{The First Derivative Test}}$) Suppose that $\xi$ is a ${\color{Cyan}{\textrm{critical point}}}$ of a ${\color{blue}{\textrm{continuous}}}$ function $f$.

  1. If $f'$ changes from positive to negative at $\xi$, then $f$ has a ${\color{red}{\textrm{local maximum}}}$ at $\xi$.
  2. If $f'$ changes from negative to positive at $\xi$, then $f$ has a ${\color{red}{\textrm{local minimum}}}$ at $\xi$.
  3. If $f'$ does not change sign at $\xi$ (for example, if $f'$ is positive on both sides of $\xi$ or negative on both sides), then $f$ has ${\color{red}{\textrm{no local maximum or minimum}}}$ at $\xi$.

Proposition 2.7. ($\color{magenta}{\textrm{The Second Derivative Test}}$) Suppose $f''$ is ${\color{blue}{\textrm{continuous}}}$ near $\xi$.

  1. If $f'(\xi) = 0$ and $f''(\xi)>0$, then $f$ has a ${\color{Cyan}{\textrm{local minimum}}}$ at $\xi$.
  2. If $f'(\xi) = 0$ and $f''(\xi)<0$, then $f$ has a ${\color{Cyan}{\textrm{local maximum}}}$ at $\xi$.

Definition 2.8. An ${\color{magenta}{\textrm{inflection point}}}$, ${\color{magenta}{\textrm{point of inflection}}}$, or ${\color{magenta}{\textrm{inflexion}}}$ of $f$ is a point $\xi$ such that $f''(\xi)=0$ and $f''$ ${\color{Cyan}{\textrm{changes sign}}}$ at $\xi$.

3. Asymptotes

Definition 3.1. If $\lim\limits_{x\to{+\infty}}f(x)=L$ or $\lim\limits_{x\to{-\infty}}f(x)=L$, we say the line $y = L$ is a ${\color{RoyalBlue}{\textbf{horizontal asymptote}}}$ of $f$. If $\lim\limits_{x\to{L}}f(x)=\infty$ (or $\lim\limits_{x\to{L^{+}}}f(x)=\infty$, $\lim\limits_{x\to{L^{-}}}f(x)=\infty$), we say the line $x = L$ is a ${\color{Salmon}{\textbf{vertical asymptote}}}$.

$\require{empheq}\begin{empheq}{align*} &\lim\limits_{x\to{+\infty}}[f(x)-(kx+b)]=0 \Leftrightarrow \lim\limits_{x\to{+\infty}}[f(x)-kx]=b.   \\ &\lim\limits_{x\to{+\infty}}[\frac{f(x)}{x}-k]=\lim\limits_{x\to{+\infty}}\frac{1}{x}[f(x)-kx]=0\cdot b=0 \Rightarrow \lim\limits_{x\to{+\infty}}\frac{f(x)}{x}=k \end{empheq}$

Then the line $y=kx+b$ is an ${\color{olive}{\textrm{oblique asymptote}}}$ or an ${\color{Sepia}{\textrm{slant asymptote}}}$ of $f$.

4. Functions in several variables

Theorem 4.1. $\color{magenta}{\textrm{The Chain Rule (Case 1).}}$ Suppose that ${\color{red}{z = f(x,y)}}$ is a ${\color{Cyan}{\textrm{differentiable function}}}$ of $x$ and $y$, where ${\color{red}{x=g(t)}}$ and ${\color{red}{y=h(t)}}$ are both ${\color{Cyan}{\textrm{differentiable functions}}}$ of $t$. Then $z$ is a ${\color{Cyan}{\textrm{differentiable function}}}$ of $t$ and

$\begin{align*}\fbox{ $\displaystyle \frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ } \end{align*}$

Definition 4.2. The ${\color{red}{\textbf{total differential}}}$ $dz$ is defined by

$$\displaystyle dz = f_{x}(x,y)dx+f_{y}(x,y)dy=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial x}dy $$

Theorem 4.3. If $F(x,y)$ is defined on a disk $\mathds{D}$ containing $(a,b)$, where $F(a,b) = 0$, $F_{y}(a,b)\neq 0$, and $F_{x}$ and $F_{y}$ are continuous on $\mathds{D}$, then the equation $F(x,y) = 0$ defines a function $y=f(x)$ near $(a,b)$ such that

$\begin{align*}\displaystyle \frac{dy}{dx}=-\frac{\partial F}{\partial x}\bigg/\frac{\partial F}{\partial y}=-\frac{F_{x}}{F_{y}} \end{align*}$

5. Equivalent infinitesimal

$\begin{align*} \sin x&\sim x   \\ \tan x&\sim x  \\ \arctan x&\sim x \\ \arcsin x&\sim x \\ 1-\cos x&\sim \frac{1}{2}x^{2} \\ \ln(1+x)&\sim x \\ e^{x}-1&\sim x \\ \sqrt[n]{(1+x)}-1&\sim \frac{1}{n}x \end{align*}$

6. Integral formulae

$\begin{align} &\iint\limits_{D}f(x,y)d\sigma = \int_{a}^{b}dx\int_{\varphi_{1}(x)}^{\varphi_{2}(x)}f(x,y)dy=\int_{a}^{b}[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)}f(x,y)dy]dx \\ &\iint\limits_{D}f(x,y)d\sigma = \int_{c}^{d}dy\int_{\psi_{1}(x)}^{\psi_{2}(x)}f(x,y)dx=\int_{c}^{d}[\int_{\psi_{1}(x)}^{\psi_{2}(x)}f(x,y)dx]dy \\ &\iint\limits_{D}f(x,y)dxdy=\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta \\ &\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta = \int_{\alpha}^{\beta}d\theta\int_{0}^{\varphi(\theta)}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho \\ &\iint\limits_{D}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho d\theta = \int_{0}^{2\pi}d\theta\int_{0}^{\varphi(\theta)}f(\rho\cos\theta, \rho\sin\theta)\rho d\rho \end{align}$

7. Analytic geometry in three dimensions

Definition 7.1. A surface in $\mathbb{R}^{3}$ is called ${\color{green}{\textbf{a surface of revolution}}}$ if it is generated by rotating a curve around an ${\color{red}{\textrm{axis of rotation}}}$.

Let $C$ be a curve in ${\color{magenta}{YOZ\textrm{-plane}}}$ defined by the equation $f(y,z)=0$. If we rotate $C$ around

  1. the ${\color{magenta}{z\textrm{-axis}}}$, then we have $f(\pm\sqrt{x^{2}+y^{2}},z)=0$.
  2. the ${\color{magenta}{y\textrm{-axis}}}$, then we have $f(y,\pm\sqrt{x^{2}+z^{2}})=0$.

Example 7.2.  Some examples of ${\color{red}{\textit{quadratic surfaces}}}$ :

  1. ${\color{Cyan}{\textbf{Elliptic cone}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = z^{2}}$.
  2. ${\color{green}{\textbf{Ellipsoid}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1} $.
  3. ${\color{magenta}{\textbf{One-sheet hyperboloid}}}$ or ${\color{orange}{\textbf{hyperbolic hyperboloid}}} : \displaystyle{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1}$.
  4. ${\color{blue}{\textbf{Two-sheet hyperboloid}}}$ or ${\color{Goldenrod}{\textbf{elliptic hyperboloid}}} : \displaystyle{\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1}$.

8. $\Gamma$ Functions

Definition 8.1. A ${\color{RoyalBlue}{\textbf{$\Gamma$ function}}}$ is a function of the form $$ \Gamma(s) = \int_{0}^{+\infty}e^{-x}x^{s-1}dx  \ (s>0).$$

The $\Gamma$ function has some important properties :

  1. $\Gamma(s+1)=s\Gamma(s)$ $(s>0)$.
  2. when $s\to0^{+}$, $\Gamma(s)\to +\infty$.
  3. $\Gamma(s)\Gamma(1-s)$ = $\displaystyle\frac{\pi}{\sin\pi s}$ $(0<s<1)$.
  4. In $\Gamma(s) = \int_{0}^{+\infty}e^{-x}x^{s-1}dx$, if replace $x$ by $u^{2}$, we have $$ \Gamma(s) = 2\int_{0}^{+\infty}e^{-u^{2}}u^{2s-1}du $$ and let $2s-1=t$ or $\displaystyle s=\frac{1+t}{2}$, we have $$ \int_{0}^{+\infty}e^{-u^{2}}u^{t}du = \frac{1}{2}\Gamma(\frac{1+t}{2}) \ (t>-1). $$

9. Applications of definite integration

The following are three cases to solve the ${\color{green}{\textrm{arc length}}}$ of a given curve :

  1. Let $C$ be a ${\color{Cyan}{\textrm{parametric curve}}}$ defined by $$ \begin{cases} x=\varphi(t), \ \ (\alpha\leq\beta)\\ y=\psi(t) . \end{cases} $$ Then the ${\color{purple}{\textbf{arc length}}}$ of $C$ is $\displaystyle s=\int_{\alpha}^{\beta}\sqrt{\varphi'^{2}(t)+\psi'^{2}(t)}dt$.
  2. If the curve $C$ is defined by the equation $y=f(x)$, $(a\leq x\leq b)$. Then its ${\color{Sepia}{\textbf{arc length}}}$ is $\displaystyle s = \int_{a}^{b}\sqrt{1+y'^{2}}dx$.
  3. If the curve $C$ is defined by the polar equation $\rho=\rho(\theta)$, $(\alpha\leq\beta)$. Then its ${\color{RoyalBlue}{\textbf{arc length}}}$ is $\displaystyle s=\int_{\alpha}^{\beta}\sqrt{\rho^{2}(\theta)+\rho'^{2}(\theta)}d\theta.$

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Charles Rezk拓扑学notes:Compactly Generated Spaces

本notes主要讲的是拓扑学中$k$-spaces与$k$-Hausdorff space的相关概念,之所以保存这份notes是因为我当初学习高阶范畴的时候,刚好需要用到这些概念。比如说,无穷范畴的定义就需要用到他们:A topological category is a category which is enriched over $\mathcal{C}\mathcal{G}$, the category of compactly generated (and weakly Hausdorff) topological spaces. The category of topological categories will be denoted by $\mathcal{C}at_{top}$.而抛开它与无穷范畴的联系,仅仅考虑它在拓扑学本身的意义,我觉得这也是本拓扑学方面有趣的notes,不仅是因为有趣的概念如$k$-空间、$k$-豪斯多夫空间,还有紧致生成的空间,还包括一些有趣的结论。总之,对高阶范畴、或者更深入的拓扑学感兴趣的人,可以看看。

点集拓扑求救

以及有没有推荐的点集拓扑教材

我翻译了Wiki、nLab、Stack Project的部分条目,以及一些教材中的定义,全放到了数学百科中

一两个月前,网站浏览人数比较少的时候,我也比较空闲,因此花了一些时间翻译了国外Wiki、nLab、Stack Project的部分条目,同时,我还将一些教材中的定义以及少部分自己写的英文notes中的定义翻译成了中文。然后我将这些翻译好的内容全都放进了数学百科中。现在因为新建了好几个子圈子,我也陆续将这些词条分门别类放进了不同的子圈。我之所以会翻译这些东西,一来是因为中文互联网的数学资源属实是过于稀缺了,每个学数学的人想要更好的发展都离不开英语这一关。但是总有人对数学感兴趣却英语不好,这也意味着有一部分人会欣赏不了英文的一些美妙的数学。二是因为词条是可以插入到文章里的,这会方便看文章的人快速查看相关术语的意思,所以在弦圈里多放些词条不仅有利于网站内容更丰富,而且能让学习交流变得更加顺畅。下面我整理一下我具体翻译了哪些词条,其实也不是很多。主要问题是翻译数学内容本身并不耗时间,真正耗时间的是输入Latex代码😅,即便我写数学好几年了,Latex也早就熟练运用,但我还是感觉在写数学的过程中Latex的输入占用了过多时间。层预层局部赋环空间赋环空间概形凸秩$p$-可除群函数向量向量空间反同态 ...

陈省身微分几何经典教材《微分几何讲义》

一说到陈省身经典的微分几何教材《微分几何讲义》,就勾起我很多回忆。这本书是我初三时期入门微分几何的教材,虽然相比于Loring W Tu微分几何经典入门教材:An Introduction to Manifolds的教材没那么好理解,但是却比王幼宁的《微分几何讲义》更加的友好。我当时真的挺喜欢陈省身的教材的,虽然以我如今的水平看,当时的我并没有真正的看懂这本书,但这是我微分几何的启蒙书。我人生中看的第一本微分几何的书是王幼宁的《微分几何讲义》,但是我虽然很有兴趣,但却没能读下去,因为开篇就直接看不懂。而陈省身的《微分几何讲义》至少我能读下去,不至于开篇就直接来那么难的东西,我也是靠这本教材知道了很多微分几何的重要概念。我到高一还在看陈省身这本教材,直到后来高二为了读懂Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis,我不得不看自己当时嫌弃的Loring W Tu的An Introduction to Manifolds,才打开了新世界,原来还是这么好看的微分几何入门教材,Loring W Tu的书确实比陈 ...

初中生如何自学数学?

知乎提问:我想这样子自学数学?纯兴趣爱好。我想从高中数学开始自学,用教材帮这本教辅书自学。然后学完高中后整理一下初等数学的知识。是不是就可以开始自学高数了?现在我打开高数好多证明题和不等式都不会做。然后把高等数学,数学分析,线性代数,高等代数,概率论与数理统计,复变函数与积分变换,实分析,复分析,泛函分析,抽象代数,代数几何,长微分方程,偏微分方程,微分几何都学完。大致就是这样的人生规划,初等数学学透了是不是就可以理解学习高等数学了?我的回答:我觉得按部就班的按顺序学习没多大意思,我初三的时候是先把导数、积分这些高中最难但却是微积分最基本的概念“学懂”,然后才学别的比较基础的概念如集合。原因无它,就是因为当时这些更感兴趣。因此与其纠结于把什么学透了再来理解什么,不如换成先尝试理解什么,理解不了再来理解什么。我初三的时候除了学会了导数、积分、加速度这些高中数学、物理的概念,但也没太过深入。顶多再学了个正余弦定理拿来应付中考。我从初中开始养成的习惯就是,对什么感兴趣就直接学它,学不懂再看其他的,因此我初中的时候还直接学了范畴的定义(只是看懂了表面的定义)。直到初三升高一的假期,我才买了高中 ...

失业、分配不平衡和结构性转变:人还能否“卷”过AI

白果/文 人类对AI,尤其是AI冲击社会就业与收入分配的担忧,其实由来已久。20世纪70年代至今,我们至少经历过三波AI发展的大潮。当一轮轮潮水退去,人们发现人工智能似乎并没有想象的那么厉害,不禁有了更自信乐观的理由。然而,这一轮AI的发展速度和能力似乎不可同日而语。ChatGPT(Generative Pre-Trained Transformer)及各种生成式AI工具的出现,使人类可以用自然语言的方式给计算机发出指令,这在很大程度上打破了某些专业壁垒。虽然当前AI生成内容在准确度、独创性上还有待提高,但替代人工、降本增效的能力显而易见。那么,此轮AI发展将冲击哪些职业,又是否会如乐观者期待的那样,带来大量新的工作?在尝试回答这两个备受关注的问题之外,笔者也试图分析AI带来的社会结构性转变,以及为了应对这些转变,个体和社会应作出怎样的努力。我们看到,目前AI工具的发展,可能会导致技术性失业、收入分配结构的恶化尤其是“极化”效应,加剧各种社会问题。而要想让技术进步更好地实现普惠价值,我们需对现有制度进行深入反思,尝试对社会系统进行革新和再设计。归根结底,技术的社会价值实现和进步方向最终 ...

叔本华:人类是一步一步地迈向死亡的存在物

丹麦哲学家齐克果(Sren Kierkegaard)说:「什么是诗人?一个不快乐的人:他把深层的痛苦埋在心里;但他的唇舌是如此形塑,以致从中经过的叹息和哀嚎,都成了动人的乐章。」诗人好像真的是比较不快乐。在一个诗人选择自杀后,我们一般都对之予以同情和理解,彷彿诗人们自我了结生命是可以谅解的。种种的思绪,不禁令人想起德国哲学家叔本华(Arthur Schopenhauer)对艺术和自杀的一些想法。叔本华向来以所谓悲观主义哲学闻名,不少没读过他的人也大概知道这点。所谓悲观主义,是一种以负面的角度去理解价值的方案。而所谓负面,又有几个面向。首先,叔本华说,人类是一步一步地迈向死亡的存在物,从这个存在特质去看,人类的存在目标和目的也就指向着死亡。「假如存在的目标是死亡,那为什么不能现在就死?」一位诗人或许正在如此提问。还不能马上就死。正因为人是「步向死亡」的存有者,人的存在处境便是动态的──就于现在的每一刻。因此,「现在」便有了独特的价值。就如他在《作为意志和表象的世界》(The World as Will and Representation)第一册中解释:真正的存在就只在现在。现在一直往过 ...

哲学家叔本华的《生存空虚说》

叔本华虽然是悲观主义者,但他的哲学思想很是值得现代人思索。作为哲学家的叔本华反对基督教并认为基督教教义虚伪,其真理是为受苦,叔本华思想深受印度教与佛教影响深远。但就基督徒而言会同意人生是苦,但非是受苦。有时悲观不一定会带来负向的思考,其实悲观者的心思较为细腻而敏感,对生活的体验也较深刻;悲观只不过是一种思想,一种观念。「人生是一种迷误。因为人的欲望是很复杂的也不容易满足,即使当时得到满足,那也只是一时的状态,很快的人又会有更多的烦恼」。——叔本华《生存空虚说》当人对于人生所要求多时就会很容易不快乐、不满足,而想要生活快乐实在很难,几乎不可能,能切切实实的明白这番道理,对人生的欲求就会减少。世界的脚步不停的在变,是一种持续性的历程,世界也绝不会因你而改变,它仍然无情的转动着。在生存空虚一文中:「人一生所追求的只是想象中的幸福。」事实上叔本华以一种虚无的论调,来思辨他对人生的看法,但有时想想,确是如同他所表述;人的欲望无穷大,当人类对人生开始想追求一切时,欲望就开始无法满足人心。在文中作者认为,当人认为生命是为了活下去,生命自然就有价值;但若是有其目标,就只是昙花一现般,最终还是等于无;也 ...

GTM242 Grillet抽象代数经典教材:Abstract Algebra 2nd

本次我分享的教材是GTM242——Abstract Algebra,作者是Pierre Antoine Grillet。本教材是我高中时期最中意的抽象代数教材了😄,当时的我看过好几本抽象代数的教材,包括国内的某本抽象代数小册子教材(已经找不到了,不知道扔哪了,记得封面是黄黑色的),最后还是GTM242让我真正学会了抽象代数。高中的时候我基本每天回家的路上都会看它,并且最后我还把它的纸质书从国外亚马逊买回来了。这本教材我个人感觉通俗易懂,挺适合喜欢代数的初学者。整本书先从最基本的二元运算讲到半群,接着才到更加抽象的群的概念。教材的整体节奏也是循序渐进,先群论接着环论,之后才是域论。讲完前面的基础概念后,才开始更加深入的话题,如伽罗华理论。本书内容可以说十分完备,而且例子也丰富,带有趣的配套习题。此书不仅可以用于学习抽象代数,还能用于学习交换代数和同调代数,完备得有些出乎意料,感觉把所有代数的重要基础概念都囊括其中。应该可以跟Serge Lang的Algebra相提并论。值得一提的是,Serge Lang的Algebra经常被推荐用于作为代数方面的词典,用于遇到不懂或者少见的代数概念时去查 ...

Atiyah:Commutative Algebra使用攻略

刷题刷傻了~这次是交换代数的经典教材,M.F.Atiyah,I.G.MacDonald的Introduction to Commutative Algebra,以下简称A&amp;M。A&amp;M在知乎上也很有声誉,基本是公认的交换代数入门书。A&amp;M很薄,128页,我大概读了二十余天,习题全部刷完了,觉得相当有收获。难度有,但并没有想象中的大,我完全能接受。A&amp;M几乎绝版了,不过可以去专门进口书店买到,打印也不失为一个好选择。说起来我本来打算把交换代数放在明年再读的,但恰逢我校大二同学开展了一个交换代数讨论班,用的这本书,并且我导也推荐我现在读,所以大概就是这时候读了。确实感觉时机刚刚好。A&amp;M是写给上个世纪七十年代的三年级本科生的讲义,很多地方不经雕琢,自成璞玉。形式化风格很是明显,鲜有大段启发性的说明或展示动机,大多是定义,定理,命题,推论的罗列,很“干”。一些证明也比较简洁,用作者自己的话说,他省去了机械的步骤;但相对的,我觉得他重要思路都点到了,真正跳步的地方比较少。我很喜欢这本书,首一的优点,它很薄,且基本的交换代数都覆盖到了,第二,它习题非常优秀, ...

12.02 弦圈更新日志

这是篇迟到的日志文,早在弦圈11月10日上下更新计划:小金库、打赏等功能中我就提到更新完后会特意写一下更新日志,说明一下更新了哪些内容和功能。然而如今过了快一个月,我才勉强腾出点精力写一写。1. 首先我完善了签到功能,并加上小金库功能,让你每天签到的智力值能够存进银行里产生金币,这完美呼应了那句俗语“书中自有黄金屋”😄。然后我完善了一下弦圈的货币系统,现在有金币(免费)和弦币(付费)。弦币将作为弦圈早期的主要流通货币,而这个弦币跟人民币的比值我也是考虑了很久,也跟朋友商量过许多次,最后定下来就是1人民币=$\pi*e$弦币=8.53973422267弦币。之后我还打算引入$\pi$币跟$e$币,但那也是后话了。2. 有了付费的弦币就需要有充值的地方,然后我写了我的钱包模块。在里面会显示你的钱包余额,以及充值记录。并且用户可以在那里进行充值。3. 接着我增加了赞赏功能,该功能的初衷是让弦圈的创作者能够有收入,不至于完全用爱发电。目前文章和帖子都可以进行赞赏,所有用户无任何门槛都能被赞赏,只要你写了文章或者发了帖子,就能被赞赏。而赞赏收入,弦圈会扣掉7.5%的手续费,低于知乎和CSDN的2 ...