··
163
·
2024-08-24 11:41

早安健康日历:老年人胖点好,还是瘦点好?

《中华老年医学杂志》研究显示:老人胖一点,更容易长寿,但不要“胖肚子”。BMI每增加1,总死亡风险降低约4.5%;当BMI大于28之后,死亡风险上升。

摄入足量优质蛋白,增肌减脂,为健康打好基础。可选择以大豆、小麦、豌豆等多种植物蛋白为原料、大豆分离蛋白PDCAAS=1的植物蛋白粉,含多样氨基酸,补足蛋白质。

0 人喜欢

添加评论
评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

抽象代数中如何执行归纳法?

我的提问:我无法理解在这个证明中,归纳法这个步骤是如何进行的。有人能帮帮我吗?感谢!回答:令$n = deg B$。他们通过对$m = deg A$做归纳法来证明那个陈述。基本情况是$m < n$。如果$m \geq n$,然后他们找到另一个多项式$A'$,在这种情况下,$A' = A - B a_m X^{m - n}$,并且它有比$m$更小的阶数。所以我们可以通过归纳假设来处理它。$A′$的商和余数表达式是用于找到$A$的。我想有两件事你可能会觉得困扰,以及为什么你没有认出归纳法。首先,基本情况不仅仅是一种情况,而是一堆情况。这里请注意,这是基本的:证明中的归纳步骤仅适用于$m\geq n$。同时注意,在这种情况下,证明$m=1$的工作量并不比证明$m<n$小:对于所有这些情况,这都是一行证明。你可能会觉得困扰的第二件事是,我们不仅对$m-1$使用归纳假设,对任何阶数严格小于$m$的多项式也使用归纳假设。这被称为完全归纳法或强归纳法:在归纳步骤中,你假设的是,命题不多于$m-1$时都是真的,而不仅仅是$m-1$。这在维基百科的“归纳法”页面上得到了很好的解释。

10.27 弦圈问题分析以及改进计划

最近有不少对弦圈感兴趣的爱好者,在弦圈注册了账号,也有人参与了互动。对此,我在这感谢各位的支持和认可!😃不过经过这段时间,用户注册后的表现,也透露出目前弦圈存在的很多问题。首当其冲的就是首页,默认显示最新内容,用时间顺序排序,意味着大家在首页往往无法看到有趣的内容,也可能找不到他想看的内容。这也导致弦圈中优秀的内容被埋没。因此,针对这个问题,我自己设计了一个简单的热度算法来计算“热度”,然后通过“热度”来排序首页的热门内容。旧的热门内容就是单纯的通过阅读量排序,没有热度随着时间衰减的现象,这也意味着新内容往往容易被旧内容排挤掉。有了更好的热度算法,我就可以将打开首页默认显示最新内容,改为默认显示热门内容了😇。接着就是中英文混合的问题,这个首页已经解决了,首页看到的内容都会把其他语言的给过滤掉。但是圈子内的话,我没有强行设置只有一种语言,因为不太想一些优秀的英文内容被埋没。我有点想参考推特的做法:热门内容推荐的大多数都是一种语言(如中文),只有一两个是其他语言(如英文)。或者说还有一种方案:热门内容全是同一种语言,再增加一个选项”全部“,即查看圈子全部内容。至于数学圈首页,那些数学分支的 ...

如何理解$\mathbb{Q}_{p}(p^{1/p^{\infty}})$?

我的提问:众所周知$\mathbb{Q}_{p}(p^{1/p^{\infty}})$被定义为$\bigcup_{n>0} \mathbb{Q}_{p}(p^{1/p^{n}})$,意思是邻接所有$p$的$p$幂根($p$-power roots of $p$)到混合特征域$\mathbb{Q}_{p}$。然而,我不太懂这个符号的意思$\mathbb{Q}_{p}(p^{1/p^{n}})$。这是如何联系到$p$的$p$幂根的?为何在这个记号中,$p$的幂是$1/p^{n}$?我认为$\mathbb{Q}_{p}(p^{1/p^{n}})$是$\mathbb Q_p$的一个割圆扩张,其中$p^{1/p^{n}}$是$n$次单位本原根(primitive $n$th root of unity)。但是似乎这说不通。并且我在另一个回答中看到$\mathbb{Q}_{p}(p^{1/p^{n}})$是一个分歧扩张(ramified extension)。谁能告诉我在哪里可以了解$\mathbb{Q}_{p}(p^{1/p^{n}})$?回答1:根据定义,$\Bbb Q_p(p^{1/p ...

可代表层的满射性

我的提问:令$S$为一个基概形,并令$(Sch/S)_{fppf}$为一个大fppf景。令$U$为一个$S$上的概形。假设存在一个满射态射$\Phi_{U}:U\rightarrow U$。那么我们能证明导出的层态射$h_{U}\rightarrow h_{U}$局部满射的?这看起来是错误的。注意到$h_{U}={\rm{Hom}}(-,U)$是一个可代表层。一个$(Sch/S)_{fppf}$上的层映射$F\rightarrow G$是局部满射的,如果对每个概形$U\in{\rm{Ob}}((Sch/S)_{fppf})$和每个$s\in G(U)$,都存在一个覆盖$\{U_{i}\rightarrow U\}_{i\in I}$,使得对所有$i$,$s|_{U_{i}}$在$F(U_{i})\rightarrow G(U_{i})$的像中。回答:令$S:={\rm Spec}(k)$为一个域,并且令$U={\rm Spec}(k[t]/t^2)$。环$k[t]/t^2$是一个$k$-代数,并且存在一个$k$-代数映射$k[t]/t^2\to t$,其将$t$打到$0$,所以我们得到 ...

宛如来自空无的召唤——数学大师格罗腾迪克的生平(上)

作者简介:艾林‧杰克逊(Allyn Jackson)曾任美国数学学会会讯(Notices of the AMS)的副主编与总主笔,加州大学柏克莱分校数学硕士。她觉得能结合数学和写作两个非常不同的领域,面对各种数学课题和数学人物,收获很大。译者简介:翁秉仁为台湾大学数学系副教授。本文原文发表在 2004 年的 Notices of the AMS 51卷第 9 期,以下译文刊登在《数理人文》创刊号(2013 年 12 月)。媒体或机构如需转载,请联系《数理人文》杂志(微信号:math_hmat)。重点摘要格罗腾迪克是二十世纪的数学大师,为代数几何开启全新的面貌,数学影响仍方兴未艾。格罗腾迪克早年多舛,与父母颠沛流离。他的数学背景贫乏,一切出于自学,但天资奇高,在苦学深思与师友攻错下,终于成为一代宗师。格罗腾迪克以韦伊猜想为目标,从范畴论观点所铸造的新工具,连结了离散的数论世界与连续的拓扑世界,启迪了多位菲尔兹奖得主的工作。如果不把科学看成权力和宰制的工具,而是我们物种在时间长河进行的知识探险。每门科学好比和声一样,依时更迭,或广袤,或丰盈。就像顺着世世代代于焉展露的乐曲,所有主题的精致对 ...

任意一个范畴之间的本质满射都是一个满态射吗?

我的提问:令$\cal{C},\cal{D}$为范畴(或者栈)。令$F:\cal{C}\rightarrow\cal{D}$是一个本质满射的函子,即在对象同构类上满射。然后$F$是小范畴(或者栈)范畴中的一个满态射吗?回答:不是。例如,任何一个对象的范畴之间的函子是本质满射的,但是如果$M_1, M_2$是两个非零幺半群,那么一个直和项的包含映射$M_1 \to M_1 \oplus M_2$,看成是两个单对象范畴间的一个函子,不是一个范畴的满态射。不过记住,“小范畴范畴中的满态射”由于多种原因,在任何特定应用中,都显然不是“正确”的概念。它抛弃了自然变换,所以你忽略了这样一个事实,即你其中在2-范畴里操作;并且在任何特定情况下,你可能需要各种“满态射”的概念。

如何构建一个比复数域$\mathbb{C}$还要大的域?

本文我们探讨这个问题:是否存在一种扩张复数域$\mathbb{C}$的方法,使得$\mathbb{C} \subset\mathbb{C}[a]$?或者$\mathbb{C}$是所有域扩张的终点?下面围绕这个问题,我们将提供两种扩张复数域$\mathbb{C}$的方法。方法1:$\mathbb{C}$的笛卡儿积$$P = {\Bbb C}\times{\Bbb C}\times\cdots$$并不是一个域,因为它有零因子:$$(0,1,0,1,\cdots)(1,0,1,0\cdots)=(0,0,0,0,\cdots)。$$但是将零因子商掉,就能得到一个域。令$\mathcal U$为$\Bbb N$上的一个nonprincipal ultrafilter。我们定义$$(a_1,a_2,\cdots)\sim(b_1,b_2,\cdots)$$当$$\{n\in\Bbb N\,\vert\, a_n=b_n\}\in\mathcal U。$$然后商$F = P/\sim$就是一个严格比$\mathbb{C}$大的域,我们称这个域为超积(英语:ultraproduct)。并且嵌入映射$ ...

如果两个对象的余极限同构,那么这两个对象同构?

令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美 ...