DjangoDjango·

Django combine multiple QuerySets

Published at 2024-05-03 00:33:49Viewed 180 times
Professional article
Please reprint with source link

Suppose that we have two different models.

class Author(models.Model):
    name = models.CharField(max_length=50)

class Article(models.Model):
    title = models.CharField(max_length=100)
    author = models.ForeignKey(Author)

In certain circumstances, you might want to merge two querysets into one queryset. For example, you may want to combine Author.objects.all() and Article.objects.all(). You could accomplish this by pure python method itertools.chain, or using Django's inbuilt queryset method union . However, these are no more intuitive than combining two querysets directly.

We recommend to use the package django-querysetsequence. To combine Author.objects.all() and Article.objects.all(), you just need to call QuerySetSequence directly :

from queryset_sequence import QuerySetSequence

authors = Author.objects.all()
articles = Article.objects.all()
authors_articles = QuerySetSequence(authors, articles)

If you have multiple models A, B, C, D, E, F , and have an array data containing their querysets, e.g. A.objects.all(), B.objects.all() , etc. To combine querysets in an array, you could make use of python's inbuilt method reduce :

from functools import reduce
from queryset_sequence import QuerySetSequence

q = reduce(QuerySetSequence, data)


Comments

There is no comment, let's add the first one.

弦圈热门内容

cover

地心人和外星人阴谋论

由于本文对超维度到能拨弄时间的文明是否存在这个问题持有悲观态度,因此论述条件限制在三维下。 1.1 地心文明论我们默认地心是指距离地面6000公里的地方,这个地方的特点是:4000摄 氏度以上的极高温360 GPa 的地心压力没有阳光、几乎没有水分、氧气放射性元素衰变产生的大量辐射不依靠【温室】能在这种地方活下来的生物应该具有的特点:不能 是碳基,因为蛋白质DNA细胞分子结构全都会在高温下遭到破坏生物体 结构要异常坚韧,能在极高压下维持运作能有办法直接或间接吸收地热 能量维持生物体运作,且这个过程气体和水不参与反应其生存和繁衍模式能与辐射共生我们目前探测地心的手段有:由于地球内部的密度变化会影响地球重力场,因此精确重力测量可以给出地下岩石密度变化 由于地核中的液态铁和镍会产生磁场,通过探测地球磁场变化可以分析地壳中磁性物质分布遇到液体层会减速的纵向地震波,和只在固体传播的横向地震波人类的理性只能讨论可知的部分,讨论不可知部分是无效操作,在可知的范围内,目前只有少量微生物能在深底层存活,马里亚纳海沟最深处的生物也只是距离地面11公里而已。在可知范围内,没有任何生物能在地心长期生存。在贝叶 ...

Django将已经存在的字段改为外键

我有一个Django模型,它之前是这样的class Car(models.Model): manufacturer_id = models.IntegerField()然后还有另一个名为Manufacturer的模型,id字段所指的就是它。然而,后来我意识到使用Django自带的外键功能,会更方便。因此,我将这个模型改为现在这样class Car(models.Model): manufacturer = models.ForeignKey(Manufacturer)这次修改似乎一下就弄好了,查询出来的结果也没有任何报错,但是当我试着运行数据迁移的时候,Django输出了以下结果- Remove field manufacturer_id from car - Add field manufacturer to car执行这个迁移会清除所有已经存在于数据库里的关系,所以我并不想这么做。我其实并不想做任何的迁移,毕竟像Car.objects.get(manufacturer__name="Toyota")这样的查询没有一点问题。我更想要一个恰当的数据库外键限制,但不是高优先级的那种。总的来说,我的问题是:是否存在一种迁移方法或者别的,能让我将一个已经存在的字段转变为外键?我不能使用--fake因为我需要可靠地在开发、生产和同事的电脑上工作。内容来源于 Stack Overflow, 遵循 CCBY-SA 4.0 许可协议进行翻译与使用。原文链接:Django change an existing field to foreign key

84个万能生活小常识,家家都能用!(收藏起来慢慢看)

生活里爱护一个人,从不该只有空口白牙承诺,还有这些点点的细心照顾,吉米老师准备了84个万能小常识,希望你遇到的人和你彼此照顾,一起感受生活细水长流。01 厨房篇1、炒菜时,不要加冷水,冷水会使菜变老变硬不好吃,而加开水炒出来的菜又脆又嫩。2、炒藕丝时,一边炒一边加些水,能防止藕变黑。3、炒鸡蛋时,一个蛋加一汤匙温水搅匀,就不会炒老,而且炒出的蛋量多,松软可口。4、豆腐下锅前,可先放在开水里浸渍一刻钟,这样可清除泔水味。5、用冷水炖鱼无腥味,并应一次加足水,若中途再加水,会冲淡原汁的鲜味。6、蒸鱼或蒸肉时待蒸锅的水开了以后再上屉,能使鱼或肉外部突然遇到高温蒸气而立即收缩,内部鲜汁不外流,熟后味道鲜美,有光泽。7、熬骨头汤时,中途切莫加生水,以免汤的温度突然下降导致蛋白质和脂肪迅速凝固,影响营养和味道。8、煎荷包蛋时,在蛋黄即将凝固之际,可浇上一汤匙冷开水,会使蛋熟后又黄又嫩,色味俱佳。9、熬猪油时,先在锅内放入少量水,再将切好的猪油放入,这样熬出来的油,颜色晶亮而无杂质。02 食醋篇1、外出容易晕车,如喝下不很酸的食醋水,可以清爽精神,减轻晕车症状。2、失眠,可将一汤匙食醋倒入冷开水中, ...

JSON Parse报错: Unterminated string

我在JSON parse函数中使用转义引号时,遇到了一个常见的问题。如果存在转义引号,在本例中为“test”,则会导致以下错误'SyntaxError: JSON Parse error: Unterminated string'.var information = JSON.parse('[{"-1":"24","0":"","1":"","2":"","3":"0.0000","4":"","5":"0.00","6":"0.00","7":"1.00","8":"0","9":"false","10":"false","11":[""],"12":"","13":"","14":"test\""}]');JSON Lint验证该JSON为有效的。

宇宙是被精心设计出来的吗?造物主真的存在吗?

我们对宇宙了解得越多,就会越发惊叹宇宙的精巧之处,宇宙中的各种规律,仿佛就是为我们量身定制一般,宇宙的精巧之处有很多很多,这里随便列举几项意思意思。图片来源网络宇宙诞生时膨胀的速度,如果快一点星系就无法形成,慢一点物质又会因为太过密集而重新坍塌。基本粒子形成时,中子的质量必须比质子稍大一点,使得中子可以衰变成为质子,这样宇宙中才可以有大量的氢元素,从而形成恒星。在四大基本力中,如果引力比现在稍强一点,那么宇宙中的恒星就会很快的耗尽自身的燃料,而如果稍弱一点,太阳又不可能点燃核聚变,宇宙空间将变成一片冰冷、黑暗。同样的,如果其他的基本力与现有的数值稍有不同,宇宙就会出现巨大的改变。图片来源网络需要说明的,上述参数都必须设计得非常精准,其精度通常都要求在小数点之后10几位。对于我们来讲,最精巧的设计莫过于我们的地球,与太阳恰到好处的距离、既不厚也不薄的大气层、足够的水资源、完美的磁场……,在地球附近,有月球帮地球稳定倾角(地球才有四季之分),有木星清理对我们威胁巨大的小行星。图片来源网络……总之一句话,宇宙中的任何细节出了一丁点的差错,我们的世界就将不复存在,甚至整个宇宙都不会出现。那么, ...

网站和APP产品举步艰难,AI产品前途未卜

你抄你的内容,我写我的原创内容,我们都有光明的未来。在如今移动互联网时代后期、生成式ai时代初期,互联网上劣币驱逐良币的现象可以说是越来越严重。😂前有百度封杀,后有谷歌的不合理审查。只能说pc端互联网已经进入了一个存量竞争及其激烈的特殊时期。百度在国内早已是被很多人口诛笔伐,搜索出来的结果被不良广告霸占,找不到好的优质内容。这其实还好,早在09年时候百度就传出恶意封杀网站,后来谷歌退出🇨🇳市场以后,有了垄断地位更是可以为所欲为。而谷歌呢,“不作恶”的谷歌相比于百度还是好那么一些,至少对于新网站,不至于像百度那样一下子摁死,根本不给机会,谷歌还是会给些流量。但是谷歌对于中文互联网的搬运抄袭也是睁一只眼闭一只眼,或者说退出了🇨🇳市场,谷歌早也不想在中文互联网投入过多精力。虽然谷歌明面上是说,会打压搬运抄袭,但实际上有不少网站里面的内容全是一字不差的复制,结果非但不是限流,反而是让他们做起来了,不断给他们推流,甚至谷歌广告都给他挂上了,也不知道谷歌广告的审查为什么这么双标,全是原创内容的网站能说成是低质量内容。其实这也是目前很多搜索引擎面对的通病,对于这种内容农场没有很好的处理和解决,导致一 ...

乘坐超光速飞船,来到距离地球2241光年的位置,能否看到秦始皇登基?

在各方面条件均合适的前提下,理论上来说是有一定概率看到秦始皇登基的。在咱们上中学的时候,可能我们的物理老师就给我们讲过非常有趣的现象:夏天打雷下雨,往往在打雷之前会有一串闪电滑向天空,闪电过后就是雷声,对不对?那么我们为什么会先看到闪电,然后再听到雷声呢?再听到雷声呢原因很简单,因为闪电属于光,它的传递速度是光速。而雷属于声音,它的传播速度是声速。一个是30万公里每秒,一个是340米每秒。从这个理论来出发的话,我们就不能发现,在闪电打雷的过程当中,我们往往是最先看到闪电,然后才能听到打雷的声音。好的,在这样一个理论前提之下,我们会就更容易来理解这个话题了,简而言之:光和闪电本质上来说没有太大的区别,它们都是光的一种形式,而它们在传播的过程当中往往和周边的环境介质都有着密切联系。但是我们把这些通通排除在外的话,当一束光飘向外太空的过程当中,在最短的时间之内,它可能到达一个极远值。但是如果想把这个光传递得更远,这中间就需要时间了,而这个时间我们是以光年来衡量的。这个光年指的是什么呢?常规情况下来说,指的是光在一年内传播的距离。拿地球和太阳当一个引子太阳每天东升西落,我们早已经习惯了这样的一 ...

cover

我们所处的世界会是虚拟的吗?盘点六种可疑迹象

我们人类对外界的感知,其实是我们的大脑对各种生物电信号处理后生成的结果,比如说我们的视觉系统会将外界的光线转化为生物电信号,然后这些信号会被传入大脑,经过大脑的处理之后,我们就“看”到了外界的情况,同样的,我们的听觉、触觉、嗅觉、味觉也是这样产生的。假如传入我们大脑的生物电信号是一台电脑模拟出来的,而不是来自我们真实的感觉系统,那我们能不能察觉到不同呢?很明显,只要这台电脑足够强大,其模拟出来的生物电信号足够真实,那么我们的大脑就无法区分,在这种情况下,我们同样可以产生“真实”的感知。进一步想,从理论上来讲,大脑的功能应该可以用足够复杂的程序代替,这就意味着,大脑还有可能只是一个程序,并没有实体。所以一个合理的推测就是,假如有一个超级系统连接着所有人类的大脑,甚至这些大脑有可能只是程序,那么如果这个系统能够完美地给每个大脑提供各式各样的实时信号,那所有的人类就都会认为自己生活在一个真实的世界中,但实际情况却是,这个世界只不过是系统虚拟出来的而已。那么问题就来了,我们所处的世界是虚拟的吗?实际上,有不少人都认为世界有可能是虚拟的,还有研究者指出,有六种可疑的迹象表明,我们所处的世界可能是 ...

宇宙是否真的存在尽头?宇宙边界之外是什么呢?

随着人类科学技术水平的不断提高,我们对宇宙的认知也日益深入。在探索宇宙的过程中,人类面临着无数的疑问和未解之谜。其中最让人着迷的问题包括,宇宙是不是无限大的?宇宙究竟是否有尽头?相对于宇宙的广袤无垠,人类的存在显得微不足道。我们目前能通过技术手段观测到的宇宙范围,被称为可观测宇宙,这是一个直径930亿光年的球体空间。然而这终究只是宇宙的一部分,人类对于宇宙的了解仅仅只是刚刚开始。即便如此,我们仍然忍不住发问,宇宙的空间到底是不是无限延伸的?宇宙是否真的存在尽头呢?如果存在尽头,那尽头之外的“世界”又是怎么一番景象?图片来自网络从古至今,人类对我们脚下的地球和地球之外的空间一直充满了好奇和猜测。最早的古人通过观察,提出了“天圆地方”的观点。这种观点源于他们站在高处观察地表的结果,认为天是圆的,地是方的。随着地理和航海技术的发展,尤其是第一次环球航行的完成,人们终于证明了我们脚下的世界实际上是一个巨大的“球”。随着时间的推移,天文学开始萌芽。古代的天文学家通过夜空中的星星逐渐发现了地球与太阳之间的复杂关系。太阳作为一颗恒星,对地球的影响无处不在。到了现代,我们不仅了解了地球围绕太阳公转的轨 ...

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved