·

望月新一与他天书般的论文,展现了纯数学与我们的距离

发布时间:2024-11-05 11:51:39阅读量:24
科普文章
转载请注明来源
写作类别

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。

2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。

David Parkins

不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。

第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenko。Fesenko立即将论文下载下来,开始阅读。但是很快他就“如坠云雾”之中。他说:“简直不可能理解那些论文。”

Fesenko给望月新一所在算术几何领域的几位顶级专家发了邮件,有关该证明的消息迅速传开。没过几天,数学博客和在线论坛开始热烈地讨论起来。但是对于许多研究人员来说,最初的兴奋很快变成怀疑。所有人,甚至那些和望月新一专业领域最为接近的人,也像Fesenko一样感到困惑不已。

为了完成证明,望月新一开创了一个新的学科分支——一个即使按照纯数学标准来看也极其抽象的分支。在论文公开几天后,威斯康星大学麦迪逊分校的数论理论家Jordan Ellenberg在自己的博客上写道,“你会感觉自己好像是在看一篇来自未来或外太空的论文。”

3年过去了,望月新一的证明依然是一个数学谜团,既没有被驳斥,也没有被广泛接受。据望月新一估计,一名数学专业研究生大约需要十年时间才能理解他的研究,Fesenko则认为即使是一名算术几何专家,可能也需要500个小时才能弄懂。到目前为止,只有4名数学家表示他们能够读懂全部证明。

望月新一本人也为他的证明平添了几分神秘色彩。虽然他可以说一口流利的英语,但是截至目前他只在日本用日语谈论了自己的研究,而且拒绝了到其它地方发表演讲的邀请。他不接受记者采访;多个采访请求都没有得到回应。他会回复其他数学家的电子邮件,也不拒同事来访,但是他仅有的公开信息就是他个人网站上零零碎碎的一些内容。

2014年12月,他写道,若要理解他的研究,“研究人员需要摒弃他们维持多年的旧有的思维模式”。在比利时安特卫普大学的数学家Lieven Le Bruyn看来,望月新一的这种态度显得目中无人。今年早些时候,他在博客上写道,“是不是只有我一人觉得望月新一是在藐视整个数学界”。

现在,数学界正在尝试解开这个问题。2015年12月,亚洲以外首个有关望月新一证明的研讨会在英国牛津举行。望月新一不会亲身到场,但是据说他愿意通过Skype回答研讨会上提出的问题。组织者希望这次讨论能够激发更多数学家花时间去熟悉望月新一的观点——希望改变对望月新一的态度。

望月新一在其最新的验证报告中写道,他的理论之于算术几何“恰似纯数学之于人类社会”。他在向数学界传达自己的抽象研究时遇到困难,而数学家群体在向数学界以外的广大群体传达其研究成果时也常常面临挑战,二者何其相似!

核心所在

abc猜想涉及a + b = c型的数值表达式。它存在几个略有不同的版本,关系到能除尽a、b和c的质数。每一个整数都能以独一无二的形式表示为一连串质数的乘积;例如15 = 3 × 5,或84 = 2 × 2 × 3 × 7。原则上,a和b的质因数与二者之和c的质因数没有关联。但是,abc猜想将它们联系了起来。abc猜想的假设大致而言指,如果大量小质数能除尽a和b,那么只有少量大质数能除尽c。

1985年,法国数学家Joseph Oesterlé在德国的一次演讲中,无意间谈到一类特别的方程式,首次提出来这种可能性。当时的观众席中坐着目前在瑞士巴塞尔大学任职的数论理论家David Masser,他意识到这个猜想的潜在重要意义,之后以一般形式将其公之于众。现在,这个猜想被归功于他们二人,并且常常被称为Oesterlé–Masser猜想。

几年后,哈佛大学的一位数学家Noam Elkies意识到,如果abc猜想是真的,那么将对丢番图方程的研究产生深刻影响。

他发现如果abc猜想得到证明,那么将一举解决大量著名的未解丢番图方程。因为,它可以给方程解的大小做出明确限制。例如,abc猜想或许可以表明丢番图方程的所有解都必须小于100。为了找到正解,人们所要做的就是代入0到99之间的每一个数字进行验证。而没有abc猜想的话,就需要代入无限多的数字。

Elkies的研究意味着abc猜想可能超越丢番图方程史上最重要的突破:证实美国数学家Louis Mordell在1922年提出一个假设——大部分丢番图方程要么无解,要么只有有限数量的解。1983年,时年28岁的德国数学家Gerd Faltings证明了该猜想,三年后因此获得了数学界人士梦寐以求的菲尔兹奖。但是Faltings说,如果abc猜想被证实,你不仅知道有多少解,“还可以直接将它们全部列出来”。

Faltings在证明Mordell猜想后不久,便开始在普林斯顿大学任教,很快他的轨迹就和望月新一的产生了交叉。

1969年,望月新一出生于东京,在他小时候一家人就搬到了美国,他在那里长大。他上了新罕布什尔的一所精英高中,早早地就展露出过人的天赋,不到16岁就成为普林斯顿大学数学系的一名本科生。很快,富有创造性的思维令他成为一个传奇,他开始直接攻读博士。

认识望月新一的人都说他具有超自然的全神贯注的能力。“从他还是学生的时候起,每天从早到晚都在学习。”牛津大学数学家金明迥说,他在普林斯顿大学认识了望月新一。金明迥记得以前在参加完一场研讨会或专题会后,研究人员和学生一般会一起出去喝几杯,但是望月新一不会去。“他并不是天生内向的人,只是全身心地投入到了数学研究中。”

Faltings是望月新一本科毕业论文和博士论文的导师,他看到了望月新一的过人之处。“很明显他天资聪颖。”他说。但是,做Faltings的学生并不是一件容易的事。“Faltings是最令学生生畏的一位老师。”金明迥回忆道。他能敏锐地发现错误,即使是知名的数学家,在和他交谈的时候,也常常会感到无所适从。

Faltings的研究对美国东海岸大学里面的许多年轻数学家具有非常大的影响。他的专业领域是代数几何,从20世纪50年代起,因为Alexander Grothendieck——20世纪最伟大的数学家,代数几何转变成一个高度抽象且理论性的领域。“与Grothendieck相比,”金明迥说,“Faltings没有太多耐心去从哲学角度思考数学。”他的数学风格表现为需要“大量的抽象背景知识,但是同时也以解决实际问题为目标。望月新一关于abc猜想的证明正好符合这一点”。

心无旁骛

博士毕业后,望月新一在哈佛待了两年,然后在1994年他25岁的时候回到了出生地日本,加入RIMS。金明迥说,虽然望月新一在美国生活了多年,但是“他在某些方面并不适应美国文化”。不仅如此,在异国长大可能加重了他作为少年数学天才的孤独感。“我认为他确实受了一些苦。”

RIMS不要求它的职员给本科生授课,望月新一在此如鱼得水。“在20年的时间里,他可以不受外界过多干扰,一心一意地开展自己的研究。”Fesenko说。1996年,望月新一因为解决了Grothendieck提出的一个猜想而在国际上声名鹊起;1998年,他受邀在柏林国际数学家大会上发言,名气更胜从前。

虽然备受推崇,但是望月新一却逐渐淡出主流视野。他的研究越来越抽象,同行们越来越难理解他的论文。从21世纪的头几年开始,他不再参加国际会议,同事们说他几乎没有再离开过京都。“连续多年不靠别人,一个人专心致志做研究需要投入非同一般的热情。”斯坦福大学数论理论家Brian Conrad说。

不过,望月新一实际上还是和数论同行专家们保持着联系,他们知道他的最终目标是abc猜想。他几乎没有竞争对手:大部分数学家都认为这个问题非常棘手,基本都敬而远之。2012年初,关于望月新一快要完成证明的消息传开了。然后就出现了8月的新闻:他把论文发在了网上。

9月,Fesenko成为日本之外第一个与望月新一谈论其默默公开的这项研究成果的人。Fesenko本来是要拜访玉川安骑男,顺道也见了望月新一。二人在一个周六见面了,地点在望月新一的办公室。里面很宽敞,书籍论文都摆放得井井有条,从办公室望出去,可以看到附近的大文字山。Fesenko说那是他“一生中见过的最整洁的数学家办公室”。两人在皮沙发上坐下后,Fesenko开始询问有关望月新一研究成果的各种问题,并讨论后续可能发生的情况。

Fesenko说他提醒望月新一要以俄罗斯数学家、拓扑学家Grigori Perelman(格里戈里·佩雷尔曼)为戒:2003年,Perelman解决了世纪难题庞加莱猜想,一举成名,但是之后他逐渐退隐,日渐疏远朋友、同事和外界。Fesenko认识Perelman,认为Perelman和望月新一的性格迥然不同。众所周知,Perelman社交能力很差(而且不修边幅),但望月新一在众人眼里却是一个擅长表达且待人友好的人,只不过对工作以外的生活非常保密。

正常来说,一项重大证明公开后,数学家会拿来阅读——一般只有几页——而且可以理解其整体论证方法。偶尔会有些证明更长一点、更复杂一点,前沿专家可能需要花上好几年的时间才能对其进行充分评估,判断它是否正确。Perelman关于庞加莱猜想的研究就是这样被接受的。即使是像Grothendieck的那样高度抽象的研究,专家们也能够将其大部分的新观点与自己所熟悉的数学对象联系起来。只有当所有疑惑都已廓清,期刊才会将证明发表出来。

但是,几乎每一个研究望月新一证明的人,最后都发现自己一头雾水。有些人感到茫然无措:望月新一在描述他的一些新的理论说明时,使用的语言近乎天书:他甚至将他创造的新领域称为“宇宙际几何”。“一般而言,数学家都是非常谦逊的,不会声称自己所做的是一场关系全宇宙的革命。”巴黎第六大学的Oesterlé说。他在验证望月新一的证明,但是没有取得什么进展。

因为望月新一的证明明显脱离了过去已有的东西。望月新一尝试从数学的集合论基础(许多人所熟知的维恩图)入手,彻底革新数学。一直以来,大部分数学家都不愿意花费时间去理解他的研究,因为他们看不到什么明显回报:很难看出望月新一创建的新理论可以用于计算。“我试着看了一些内容,之后放弃了。我看不懂他的研究。”Faltings说。

2014年,Fesenko对望月新一的工作进行了详细的研究,并于当年秋天再次去RIMS拜访了望月新一。他说他已经证实了望月新一的证明。(另外三名表示已经证实该证明的数学家也在日本和望月新一一起工作了很长时间。)

按照Fesenko的说法,宇宙际几何的核心要义是用全新的眼光看待整数——暂不考虑加法,将乘法结构看成一种可延展可变形的结构。这样一来,标准乘法就只是结构家族中的一个特例,就像圆形是椭圆的一个特例一样。Fesenko说望月新一自比为数学大师Grothendieck——这并不过分。“过去,我们有的是望月新一之前的数学;现在,我们有的是望月新一之后的数学。”Fesenko说。

但是到目前为止,寥寥几个能够理解望月新一研究的人却很难向他人解释。“每一个尝试这么做的人我都认识,他们非常睿智,但每次眼见着快要成功了,却都无疾而终。”一位不愿具名的数学家说。他说这种情况让他想起了英国喜剧团巨蟒组(Monty Python)的一个故事,一位作家写出了全世界最好笑的笑话。每一个读过的人都笑得丢了性命,因此无法将笑话讲给别人听。

Faltings认为这就是问题所在。“你有好的想法还不够:你还要能够向别人解释清楚。”他说如果望月新一想要他的工作能够被人接受,就应该与人进行更多的沟通。“一个人有权利我行我素。”他说,“如果他不想传播自己的理论,他就没什么义务。但如果他希望被认可,就必须做出妥协。”

结局不定

对于望月新一而言,或许会很快迎来一些转机,美国克雷数学研究所将在牛津举办一场万众期待的研讨会,预计包括Faltings在内的一众业内重要人物都将出席。金明迥和Fesenko是会议的组织者,他说几天的演讲不足以阐明全部理论。但是,“希望在会议结束后,有相当一部分人能够愿意投入更多精力来研究这个证明”。

大部分数学家都预计还需要很多年才能得出确定结论。(望月新一说他已经把论文投给期刊了,大概仍在评审中。)研究人员希望有一天能够有一个人不仅自己懂,还能解释出来让别人懂。问题是,很少有人愿意成为这样的人。

展望未来,研究人员认为未来的未解问题可能不再会像这样复杂棘手。Ellenberg指出,在新的数学领域,定理的陈述一般都是简单的,而且证明非常简短。

现在的问题是望月新一的证明是否会像Perelman的那样被接受,还是走向另一种结局。一些研究人员以普渡大学著名的数学家Louis de Branges为例,提醒应该保持谨慎态度。2004年,de Branges声称证明了黎曼猜想——许多人视之为数学领域最重要的一个未解问题。但是,其他数学家对此表示怀疑;许多人说de Branges的理论不符合传统,而且写作风格怪异,他们没有兴趣细究;很快该证明便从人们的视线中消失。

Ellenberg认为对于望月新一的研究,“不能用一刀切的方式来评价”。即使他关于abc猜想的证明不正确,他的方法和理念仍有可能渗透进数学界,并有可能在其它某些方面发挥作用。“根据我对望月新一的了解,我真的认为他的论文里面极有可能隐藏着某种精彩或重要的数学内容。”Ellenberg说。

不过他也补充表示不排除结局走向相反的方向。“我认为如果我们简单地把它遗忘了,那将是一件不幸的事。令人悲哀。”

Nature|doi:10.1038/526178a

原文发布在2015年10月7日的《自然》新闻专题上

原文作者:Davide Castelvecchi

本文转自 https://zhuanlan.zhihu.com/p/43348594点击右边标题阅读英文原文:The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Grothendieck著名求职信:一个纲领的提纲(Esquisse d'un Programme)

在之前分享EGA的帖子代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列中,我说过会把Grothendieck的其他著作都分享出来,包括《一个纲领的提纲》。一个纲领的提纲,法语原标题为Esquisse d'un Programme,翻译成英文即Sketch of a Programme。这是Grothendieck于1984年提交给CNRS的求职信。 关于该信更详细的背景可见遥远的声音。在这封信中,Grothendieck提出了一个宏伟的理论——远阿贝尔几何(anabelian geometry),即考虑任意代数簇的平展基本群“远离阿贝尔”的部分。可惜Grothendieck直到最后也没能将自己的构想实现,他在该领域留下了冗长且晦涩的《伽罗华长征》(之后我会分享自己收藏的长征节选)。但是远阿贝尔几何的思想却延续了下去,其与Langlands program并列为后Grothendieck时代代数几何的几大方向之一。正是基于Grothendieck的这些思想,才有了之后望月新一在远阿贝尔几何方面的研究成果把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革 ...

大白狼人杀非正规入门/提升手册

丘比特讲解篇之前有好一段时间没有及时更新文章,实感抱歉,今天为大家正式介绍一下比较有趣的角色--丘比特(如果之后有时间的话,可能会继续介绍如盗贼,混血儿和野孩子等角色),首先,我们来了解一下丘比特的功能是什么。丘比特:在游戏开始天黑的时候,法官会最先叫醒丘比特,并示意丘比特可以将两位玩家连成情侣(可以将自己也连进链子里),在丘比特闭眼之后法官会让被连在一起的情侣睁眼互相确认恋人号码(但是不同互通身份,即不能告知对方自己是否是狼人或是神民),之后的夜晚丘比特和情侣不会再再夜里睁眼(如果情侣非普通村民的话,在自己角色的环节依然睁眼正常听法官指挥行动)。1. 如果被丘比特连在一起的两个人都是好人的话,则情侣属于好人阵营,丘比特也属于好人阵营,丘比特和链子的胜利条件和好人阵营胜利条件一致。2. 如果被丘比特连在一起的两个人都是狼人的话,则情侣依旧属于狼人阵营,求比特也属于狼人阵营,丘比特和情侣胜利条件和狼人阵营一致。3. 如果被丘比特连在一起的两个人一个是好人,一个是狼人,则丘比特和链子属于第三方阵营,其胜利条件为杀光场上其他所有玩家(即屠城胜利),但要保证所有普通村民和所有神民两者在第三方阵 ...

纸上谈狼人杀入门篇(二) - 基本逻辑

纸上谈狼人杀入门篇(一) - 基础规则纸上谈狼人杀入门篇(二) - 基本逻辑在上一章介绍了狼人杀的基本规则之后,我相信很多人已经对这个游戏有一些印象了。在这一章中,我会简单介绍几个我认为很重要的逻辑,并附上一个简单的说明,并在介绍完所有逻辑之后,讨论一下状态分析流与逻辑分析流的关系,以及狼人杀大神们是如何运用逻辑与状态这两种分析手段的。其实对于新手来说,在刚开始的时候只要记住这些逻辑就可以了。至于这些逻辑到底为什么会成立,以及在具体情况中,它们有没有不成立的可能性的这些问题,我相信你在开始玩这个游戏之后,自己就能慢慢解开。而在入门阶段,如果你去思考太多情况的话,反而会大概率让你陷入迷失的状态,并对这个游戏失去兴趣。所以现在,我认为你可以把以下介绍的逻辑当成真理。等到你有了更多狼人杀的经验之后,就是你开始反思这些真理的时候。在开始介绍逻辑之前,我希望先介绍一下这些逻辑的一些相关信息,这样可以让新手更好的理解后面所介绍的逻辑。1. 以下所有的逻辑都是站在好人阵营玩家的视角上来说的。因为对于狼人来说,其实局势在第一晚就已经很明显了,谁是队友谁是对手是非常清晰的。所以狼人不太需要这些逻辑去分析 ...

纸上谈狼人杀入门篇(一) - 基础规则

纸上谈狼人杀入门篇(一) - 基础规则纸上谈狼人杀入门篇(二) - 基本逻辑最近一段时间,周末常常和朋友一起狼人杀,不过因为总是有新的朋友不断加入的缘故,每次开始之前都要花蛮多时间介绍规则。不过对于新手来说,光是了解规则并不意味着就清楚怎么玩这个游戏了,过去几周,我们的局中就出现了几次新手拿到关键身份却带崩了好人团队的情况。本文的主要目的就是希望让狼人杀新手读完之后,至少知道如何去参与这个游戏,作为好人应该怎样贡献自己的力量,作为狼人应该怎样去帮助同伴获得胜利。如果你已经是狼人杀的高端玩家了,那么可能本文介绍的东西对你没有任何帮助了,不过你可以把本文分享给你局里面的新手玩家,这样也可以帮你节省很多介绍规则的时间。首先,我这篇文章有一个预设的前提,就是你所在的局中已经有会玩狼人杀的玩家了。因为狼人杀有很多细枝末节的规则,但是如果你是一个新手玩家,知道这些规则并不太有用,反而还会把你搞糊涂。所以我暂时并不会介绍你不需要了解的规则,因为只要你所在的局中有会玩狼人杀的玩家,在涉及到特殊规则的时候(一般这些特殊规则出现的情况并不多),让他们介绍一下就好了。我在这篇文章里只会介绍关键性的规则,不过 ...

狼人杀节目的发展史、现有动荡以及未来的路

一眨眼狼人杀的风潮快热了两年了,从第一个节目Lyingman第一季开始——那个时候的绝大部分主播都也还是懵懂状态,对狼人杀这个游戏都还是一知半解。在那时候还是DC大魔王在场上呼风唤雨,以及跟董大师的恩怨情仇;那时候的JY、PDD、09也都还相当稚嫩。遥记得第一季第四期09预言家那局黑死病,09到结束的时候仍一脸茫然——为啥我验谁挂谁,为啥一直验不到狼。Lm第一季虽然狼人杀板块十分短暂,但也是我开始了解狼人杀的第一步,从这以后慢慢开始懂得、明白这个游戏的乐趣和玩法。很快,躺男第二季与大家见面了,虽然第二季采用了11人的板子:3神(预女猎)3狼5民或者丘比特的板子,但是11人的板子还是一样富有乐趣。第二季里少帮主的指点江山以及他的爽朗笑声;嫖弟弟的满口骚话,加上不符合他脸大小的阿飞面具,根本掩盖不住他“强烈”的味道;kk小神每次拿狼时候那掩饰不住的慌张,还有他那不怕被喷的勇猛直爽的性格,虽然有些些倔强和偏激,但是也是在属于那一季的新人里最能给别人留下印象的玩家(当然为啥会清楚记得kk小神还是有第三季的加成);另外还有半路杀出的新世界卡密——半个橙子。在第六集和第七集里面半个橙子逆天的发言强 ...

狼人杀超详入门攻略

文章内容比较长~ 分角色介绍(游戏规则)、狼人战术以及其他各角色玩法三个方面~应该看完之后狼人杀入门是没什么问题了 > <1. 角色介绍(游戏规则)先介绍12人的标准局板子:四神(预言家,女巫,猎人,白痴),四狼,四民一般游戏流程为:1. 天黑,全体玩家闭眼。2. 狼人请睁眼,狼队请商量战术(一般最长给45s时间),狼人请杀人,狼人请闭眼。3. 预言家请睁眼,预言家请验人,预言家请闭眼。4. 女巫请睁眼,女巫昨天晚上死亡的是xx号玩家 ,是否要用药(女巫一天晚上只能使用一瓶药,且女巫使用解药以后就不能获知狼人杀人信息,如果使用了解药之后狼人晚上刀中女巫法官也不会给女巫提示是否是女巫中刀;女巫始终不能自救,即第一天晚上狼人刀中女巫后女巫只能选择使用毒药或者选择不使用药),女巫请闭眼5. 猎人请睁眼,你今天晚上的状态为 (法官每天晚上会叫醒猎人,如果猎人不幸被女巫甩中毒药,法官会给猎人一个手势表示第二天宣布死亡讯息的时候猎人不能发动技能,也不能询问法官是否能发动技能;若晚上法官没有给猎人手势则表示当晚猎人没有死亡或者被狼人杀害,第二天你可以自己选择是否发动技能,若翻牌则一定要发 ...

我们的宇宙并不是由纯数学构成的

在理论物理学的前沿,许多最流行的想法都有一个共同点:它们都从一个数学框架开始,这个框架试图解释比我们目前流行的理论更多的东西。我们目前的广义相对论和量子场论框架在它们所做的事情上很出色,但它们并不是万能的。它们从根本上是不相容的,不能充分解释暗物质、暗能量,也不能充分解释为什么我们的宇宙充满了物质而不是反物质,以及其他谜题。数学确实使我们能够定量地描述宇宙,如果应用得当,它是一种非常有用的工具。但宇宙是一个物理实体,而不是数学实体,两者之间有很大区别。这就是为什么单靠数学,我们永远不足以得出万物的基本理论的原因。16 世纪最大的谜团之一是行星如何以逆行的方式运动。这可以通过托勒密的地心模型(左)或哥白尼的日心模型(右)来解释。然而,要获得任意精度的细节需要我们在理解观察到的现象背后的规则方面取得理论进展,这导致了开普勒定律和牛顿的万有引力理论。大约 400 年前,一场关于宇宙本质的争论正在展开。几千年来,天文学家一直使用地心模型准确描述行星的轨道,在这个模型中,地球是静止的,其他所有物体都围绕着它旋转。借助几何数学和精确的天文观测——包括圆、等距圆、均轮和本轮等工具,天体轨道的精确数学 ...

记录一下知乎问题《你的编程能力从什么时候开始突飞猛进?》

自从我为了完成毕设而开始全栈写网站,我的编程能力就跟打了鸡血一样,我做梦都没想到自己居然能写出一个像样的网站 弦圈 - 找到属于你的圈子 (manitori.xyz)(不喜勿喷)。原本我是个对编程一窍不通的人,我只对数学感兴趣,对编程可谓是不屑一顾,每次上编程课,我都在下面摸鱼看数学的内容。课后作业以及大作业,要么是CV缝合弄好的,要么就是等别的同学写完直接拿一份抄来应付的。直到后来,我得知毕业的时候只能写毕业设计,不能写纯数学方面的毕业论文,我感觉天都塌了。在距离答辩还有一年的时间里,我某天突然突发奇想的想找些项目来写写玩玩,于是就是梦开始的地方。我第一次接触到了开发网站这个东西(虽然这玩意已经存在很多年了),知道了Vue.js,接着知道了用Python可以做后端,然后就开始上手写个前后端分离的网站。刚开始我也只是随便写写,能应付得了毕设就得了。可是写着写着,我发现自己对编程越来越感兴趣,同时也越写越顺手、越熟练。然后我就开始没日没夜的写,最后经过六个月的开发,第一个网站 弦圈 - 找到属于你的圈子 (manitori.xyz) 于今年4月4日终于上线了。关于编程,我感觉是只有你真正 ...

代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版

关于Grothendieck的代数几何三部曲EGA、SGA、FGA的法语原版,我已经分享了两部,分别在 代数几何教皇Grothendieck经典著作:代数几何原理法语原版全系列(1)与 代数几何教皇Grothendieck经典著作:代数几何讨论班法语原版全系列 中可以下载。没想到相比于EGA,大家对SGA的热情非常高涨,可能是EGA已经出版了完整的中译,并且EGA知名度最高,资源也更好找。而SGA不同,知名度小一些,并且阅读难度也大一些,同时资源相对稀缺不好找,目前也没有完整的中译。现在我打算把三部曲中存在感最低的FGA也分享出来,这次我十分意外的发现FGA时隔多年居然有英文翻译版了,这是十分令人惊喜的。FGA法语全称Fondements de la Géometrie Algébrique,英文翻译为Foundations of Algebraic Geometry,即代数几何基础。这本书我也没仔细看过,几年前拿到手时,也只是粗糙无比的扫描版,扫描的书还是上个世纪用打字机打出来的,阅读观感非常不好(可能是不习惯吧)。虽然如今FGA中的大部分内容,学代数几何的人应该都会知道,如desc ...

波尔兹曼大脑:宇宙中漂浮着至少7万5千亿亿亿个意识体

在这个广袤无垠的宇宙中,我们总爱幻想自己独一无二,是万物之灵。但你知道吗?根据某个奇妙的科学理论,你、我,甚至整个地球,可能都只是宇宙中随机“涨落”出来的一个意识体——没错,这就是让人脑洞大开的“玻尔兹曼大脑”假说!熵增定律:宇宙为何越来越“乱”?你的房间如果不打扫,是不是会越来越乱?这就是“熵增定律”在生活中的体现。简单来说,熵就是系统混乱程度的量度,而熵增定律则告诉我们,一个孤立系统的熵总是趋向于增加,直到达到最大化,也就是系统变得最混乱。宇宙,作为一个巨大的孤立系统,按理说也应该遵循这一法则。但奇怪的是,我们观测到的宇宙,似乎是从一个极其有序、熵极低的状态开始的。这,是为什么呢?玻尔兹曼的“脑洞”:宇宙其实是个“随机播放器”?这时,奥地利物理学家路德维希·玻尔兹曼登场了。他提出,熵增定律其实是统计性的,就像抛硬币,虽然正面朝上的概率是50%,但在无限次抛掷中,正面和反面出现的次数会趋于相等。同样,宇宙在大部分时间处于高熵态,但无限的时间尺度上,偶尔也会有“小概率事件”发生,即熵的随机涨落导致低熵态的出现。换句话说,我们现在所看到的这个有序、低熵的宇宙,可能只是一次“宇宙级”的随机 ...

为什么可能没有体积的量子所组成的物质却有体积?

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力 ...