··
82
·
2024-08-27 00:10

早安健康日历:喝红酒能软化血管吗?

生活没有样板

当下就是最好的存在

0 人喜欢

添加评论
评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

吴宝珠:不要浪费时间写糟糕的论文,一篇好论文胜过一百篇垃圾论文

吴宝珠1972年出生于越南一个学者家庭,15岁时进入越南国立河内大学附属高中的数学专修班,1988年和1989年,他连续两届参加国际奥林匹克数学竞赛,获两枚金牌。他在法国完成大学学习,在博士研究生阶段开始研究朗兰兹纲领;2008年,他证明了朗兰兹纲领的基本引理。朗兰兹纲领由加拿大裔美国数学家罗伯特·朗兰兹(Robert Langlands)发起。1979年,朗兰兹提出一项雄心勃勃的革命性理论:将数学中两大分支——数论和表示论联系起来,其中包含一系列的猜想和洞见,最终发展出“朗兰兹纲领”。朗兰兹认为,纲领的证明需要几代人的努力,但他相信证明纲领的前提需要一个基石——基本引理,而且这个证明应该比较容易。然而,基本引理的证明实在是太难了,直到29年后,2008年,年轻的吴宝珠才用自己天才的方法,将之证明。2009年,美国《时代》周刊将基本引理的证明列为年度十大科学发现之一。2010年9月1日,吴宝珠成为美国芝加哥大学的正教授。前段时间,应哈佛大学数学教授、清华大学数学科学中心主任丘成桐邀请,吴宝珠到北京作为期一周的学术访问,其间,他接受了《科学时报》记者采访,谈及自己的数学之路。在越南展露数 ...

弦圈“写文章”中各项设置的介绍

在本文中,我们将逐个介绍“写文章”页面中,各项设置的具体含义以及功能是什么。文章类型文章类型是必选项,用于给读者说明该文章是什么类型的。文章类型的选项包括,普通文章、科普文章、专业文章、学术文章、自定义。普通文章是指,这篇文章在圈子内没有特别的目的,或者说不是科普文章、专业文章、学术文章的文章都可以算是普通文章。科普文章是指,这篇文章目的是为了给读者科普一些专业知识,文章的用语更加通俗化,专业性不强。专业文章是指,这篇文章的目的是传播分享一些专业性的知识,包括一些工作上所需要的专业技能,比如说财务知识、编程知识。文章有一定的专业性,但并不是学术性质的文章。学术文章是指,这篇文章的内容是学术相关的,这种文章不仅专业性强,而且拥有一定的学术性,对读者要求有一定的门槛。学术文章还包括介绍文、论文、笔记、综述、自定义。介绍文是指,这篇文章是为了介绍某个新理论或新领域给没学过或者不熟悉的研究人员,其标题一般是An introduction to xxx。笔记顾名思义,其标题一般带有note。综述,其标题一般带有survey。自定义是指,如果你觉得你的文章不属于上面提到的任意类型,那么你可以自己输 ...

说过多少遍不要All in AI!初创公司没有一个产生现金流的业务就搞AI无异于在裸泳

这段时间是AI大火的时期,企业之间大模型的竞争已经进入白热化阶段,很多初创公司也相继涌入了AI大模型赛道。不少人争相加入AI赛道的原因,是相信,这将会是一场新的工业革命,或者说这相当于上次的互联网革命。这里我并不否认这种观点,而是想指出,现在没人真的能确定这场AI大热是否真的能产生堪比工业革命的收益。如果商业化落地成功,且能满足大量的市场需求从而能产生大量的利润,才能说这或许是一场工业革命。而且换位思考一下,如果你确定这是次巨大的机缘,那为什么要公之于众呢?不仅公之于众还要大肆宣扬,生怕有人不知道,这正常吗?是不是跟股市一样,大喊着“牛市”了,要涨了,然后一堆韭菜入局。目前来看,AI的局势还处在混沌摸索之中,绝大多数人的钱注定会打水漂,已经有大量的AI公司倒下了。讽刺的是,有些通过AI热赚到钱的,反而是卖课割韭菜的。然后关于目前的行情,从明星AI创业公司的动向,也能看出一二,不少明星创业公司选择卖身,或者创始团队分崩离析,还有创始人流下烂摊子直接跑路的。就连最大的OpenAI如今创始人团队都走光了。连明星创业公司都如此,如果你这时候选择All in AI,你想想那失败的风险有多大,就跟 ...

群胚之间的全忠实函子在对象上单射?

我的提问:令$\cal{C}$和$\cal{D}$为两个群胚,即态射都是同构的范畴。令$F:\cal{C}\rightarrow\cal{D}$为一个从$\cal{C}$到$\cal{D}$的全忠实函子。然后$F$在对象上单射吗?换句话说,对象函数$F:{\rm{Ob}}(\cal{C})\rightarrow{\rm{Ob}}(\cal{D})$是单射的?回答:不是。给定任意一个集合$X$,我们可以构造一个叫做$X$上的非离散群胚的群胚,它对$x, y \in X$都有一个唯一的同构$x \to y$。每一个集合间的函数$f : X \to Y$都能导出一个非离散群胚之间的全忠实函子,不管$f$是否是单射的。事实是范畴(不一定群胚)间的一个全忠实函子$F : C \to D$能导出一个对象同构类上的单射。想知道为何,令$i : F(c_1) \cong F(c_2)$为一个同构。因为$F$是全的,$i = F(i')$对某个$i' : c_1 \to c_2$,然后类似的$i^{-1} = F(j)$对某个$j : c_2 \to c_1$。于是,我们有$F(i' \circ j) ...

幂零理想层的局部截面是什么样的?

提问:令$(X, O_X)$为一个概形,然后$I$是一个幂零的理想层,即$I^n=0$对某个$n$。这是否意味着每个$I(U)$都是$O_X(U)$的一个幂零理想?回答:令$I\subseteq \mathcal{O}_X$是一个理想层,然后令$\mathcal{F}$为一个预层,它对每个$X$的开集$U$,都对应一个理想$I(U)^n\subseteq \mathcal{O}_X(U)$。你说$I$是$n$阶幂零的如果$\mathcal{F}^\#$是零,其中$\#$用于表示层化。但是因为$\mathcal{F}$是一个分离的预层,作为$\mathcal{O}_X$的子层,我们有$\mathcal{F}=0$当且仅当$\mathcal{F}^\#=0$(例如参考[1, Tag00WB])。因此,我们推断出以下结论:事实:令$X$是一个概形,而$I$是$\mathcal{O}_X$的一个理想层。然后下面的都是等价的:1. 对所有开集$U$,理想$I(U)^n$是零。2. 预层$U\mapsto I(U)^n$的层化是零。[1] 多位作者, 2020. Stacks project. h ...

数电票额度注意事项!

出现额度为0近12个月未使用数电票开票,触发系统定期调减,额度调减为0。额度调减较多近12个月开票金额未达到赋额的80%,赋额调整减少为最近12个月开票额最高的一个月的实际开票额。最高的一个月开票额仅为5万元,将被调整为5万元。定期调整电子发票服务平台每月自动对试点纳税人总授信额度进行调整。临时调整税收风险程度较低的试点纳税人当月开具发票金额首次达到总授信额度一定比例时,电子发票服务平台当月自动为其临时增加一定的额度。人工调整试点纳税人因实际经营情况发生变化申请调整总授信额度,主管税务机关依法依规审核未发现异常的,为纳税人调整总授信额度。是指人工调整(找审批)。