·

不用函数证明不等式$\frac{x(1-x)^2}{(1+x^2)^2} \leq \frac{1}{4}$

Published at 2024-11-08 12:05:41Viewed 23 times
Common article
Please reprint with source link
Writing categories

提问:我需要仅通过不等式证明$\forall x \in \mathbb{R}$:

$$\frac{x(1-x)^2}{(1+x^2)^2} \leq \frac{1}{4}$$

不考虑函数$f(x) = \frac{x(1-x)^2}{(1+x^2)^2}$。

我尝试证明差$$\frac{x(1-x)^2}{(1+x^2)^2} - \frac{1}{4}$$是负数,因此我发现接着我们需要证明$$-x^4+4x^3-10x^2+4x-1 \leq 0$$但没有任何结果。

你有办法证明这一点吗?

回答:你已经快要解决了。只需要用另一种方式将你的不等式写出来:

$$x^4-4x^3+10x^2-4x+1\ge 0$$

现在注意到$$\begin{align*}x^4-4x^3+10x^2-4x+1&=(x^4-4x^3+6x^2-4x+1)+4x^2\\&=(x-1)^4+(2x)^2\\&\ge 0\end{align*}$$


翻译自Mathstackexchange:inequality without using study of function

Comments

There is no comment, let's add the first one.

弦圈热门内容

Vertically aligning CSS :before and :after content

I am trying to centre the link with the image, but can't seem to move the content vertically in any way.<h4>More Information</h4> <a href="#" class="pdf">File Name</a>The icon is 22 x 22px.pdf { font-size: 12px; } .pdf:before { padding:0 5px 0 0; content: url(../img/icon/pdf_small.png); } .pdf:after { content: " ( .pdf )"; font-size: 10px; } .pdf:hover:after { color: #000; }

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved