·

如何构建一个比复数域$\mathbb{C}$还要大的域?

发布时间:2024-10-15 19:04:35阅读量:194
学术文章
·
笔记
转载请注明来源
写作类别

本文我们探讨这个问题:

是否存在一种扩张复数域$\mathbb{C}$的方法,使得$\mathbb{C} \subset\mathbb{C}[a]$?或者$\mathbb{C}$是所有域扩张的终点?

下面围绕这个问题,我们将提供两种扩张复数域$\mathbb{C}$的方法。

方法1:$\mathbb{C}$的笛卡儿积$$P = {\Bbb C}\times{\Bbb C}\times\cdots$$并不是一个域,因为它有零因子:$$(0,1,0,1,\cdots)(1,0,1,0\cdots)=(0,0,0,0,\cdots)。$$

但是将零因子商掉,就能得到一个域。令$\mathcal U$为$\Bbb N$上的一个nonprincipal ultrafilter。我们定义$$(a_1,a_2,\cdots)\sim(b_1,b_2,\cdots)$$当$$\{n\in\Bbb N\,\vert\, a_n=b_n\}\in\mathcal U。$$

然后商$F = P/\sim$就是一个严格比$\mathbb{C}$大的域,我们称这个域为超积(英语:ultraproduct)。并且嵌入映射$\Bbb C\longrightarrow F$是显然的。

方法2:给定任意一个域,我们总能构造更大的域出来。如果给定的域不是代数封闭的,我们给adjoin新的多项式的根,否则我们可以adjoin超越元素(这等价于构建一个有理函数域)。事实上,每一个域扩张都是一个纯超越扩张的代数扩张。

(因为$\Bbb C$是代数封闭的,它没有代数扩张,因此没有有限域扩张。)

特别的,$\Bbb C(T)$(复系数变量$T$的有理函数域)在集合论包含关系上,比$\Bbb C$大。然而,它的代数闭包跟$\Bbb C$有着相同的基数,因此它抽象意义上同构于$\Bbb C$。这意味着存在一种将$\Bbb C(T)$嵌入到$\Bbb C$里的方法。如果我们想要在基数意义上构建更大的域,我们可以构建$\kappa$多个变量的复系数有理函数域,其中$\kappa$是一个比连续统$\mathfrak{c}=|\mathbb{C}|$更大的基数。这显然比$\Bbb C$更大!

注意到$\mathbb{C}[T]$不存在既是域,又严格包含于$\Bbb C$的子环。因为如果它存在,它就会包含某个非常数$f(T)$,从而包含非多项式元素$f(T)^{−1}$,该元素不可能在$\mathbb{C}[T]$里。

同时注意到不同特征值的域是不相容的:不同特征值的域永远不可能包含在同一个域里面。因此,不仅不存在所有域的共同域扩张(一个域能包含所有的域),并且“所有域的类”在不同且互斥的方向上延申(每个素数对应一个,零对应一个)。

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Grothendick经典同调代数文章:Some aspects of homological algebra

这是Grothendick著名的关于同调代数的文章Tôhoku paper的英文翻译版,原文是法语版,标题为Sur quelques points d'algèbre homologique。英文翻译为:Some aspects of homological algebra。该文章概述了很多同调代数的重要概念,其中基本都跟代数几何有联系,并且里面不少概念其实是Grothendick本人提出来的,如abelian categories。可以说这篇文章是同调代数的经典文章,在数学圈内也时常有人推荐看这篇文章,毕竟这可是祖师爷亲自从同调代数的基础概念一步步讲起,这对学同调代数或者代数几何的人都有很大裨益。我收藏这篇文章的时候都2021年了,现在拿出来推荐给大家!之后我还会把法语原版也发出来。

望月新一关于abc猜想的天书证明:宇宙际Teichmüller理论

望月新一以及他的Inter-universal Teichmüller Theory(宇宙际Teichmüller理论)可以说是非常出名,相较于费马大定理证明的晦涩难懂,宇宙际Teichmüller理论才算是真正的天书,全世界没几个人能看得懂,就连大佬Faltings都看不懂。望月新一是Faltings的学生,Faltings以“暴力横推”的风格闻名,张寿武说过Faltings的风格就像直接开着推土机把山碾平了过去。并且Faltings看论文都是只看前沿(introduction)就能知道整篇论文的主要定理,甚至还能直接证出来。见望月新一与他天书般的论文,展现了纯数学与我们的距离可见Inter-universal Teichmüller Theory有多难懂,它涉及到代数几何一个高深的领域:远阿贝尔几何(anabelian geometry),顾名思义就是考虑平展基本群$\pi_{1}^{et}(X,x)$远离阿贝尔的部分,远阿贝尔几何源于Grothendick的一封入职信Esquisse d'un Programme,他于其中提出一个宏大的理论,然而最终他却没能将其实现。而望月新一可 ...

2024-11-22凌晨:弦圈最近两周更新情况

在上篇弦圈11月10日上下更新计划:小金库、打赏等功能,我提到会更新网站多个功能。原本以为这些功能最多一周就能全部写完,结果当我真正开始写,才发现自己完全低估了这些功能实现的难度,以及所需要耗费的时间。而且由于我的完美主义倾向,导致我比原计划多开发了好几个功能,比如说编辑器插入公式、交易中心、收藏党最喜爱的收藏夹等。因为我想反正都大更新了,那干脆就更新得多一些,把以前埋的坑都填上。再然后支付功能比我想象中的要难得多,这不仅仅指代码难写,还包括支付宝的审核等问题,人事问题上也耗费了不少时间。在这里忍不住吐槽一下支付宝和微信支付,这国内两家巨头技术文档写的是真烂、真水。多少年了,支付宝支付SDK的demo示例还是Java、PHP,Python压根没写,只能自己摸索然后网上找到些零散的资料。微信支付先是需要微信认证强制每年收费300元,然后文档也是写得不清不楚。反正目前网站就暂时只支持支付宝吧,之后再把微信支付补上吧,因为真的被恶心到了。总之如今写了快两个星期了,这些功能终于要完成了,预计明后天就能上线测试。网站也完全没更新,也找不到人帮忙更新,只能先放着了。之后我会发一篇更新日志,更加详细 ...

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。

Grothendieck经典著作:代数几何原理EGA 1(1971第二版)法语+英译

在前面几贴中,我已经分别分享了Grothendieck的代数几何三部曲EGA、SGA、FGA,链接如下:代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列(1)代数几何教皇Grothendieck经典著作:代数几何讨论班SGA法语原版全系列代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版但其实EGA 1还有1971年的第二版,Grothendieck在EGA 1第二版中更新了一些内容,因此一些概念定义会与第一版中有出入。原本我也是不太知道EGA竟然还会有第二版,直到后来有次看文献时,发现作者引用了EGA 1(1971)才知道有这一版本。对比EGA 1第一版跟第二版,感觉第二版要比第一版更好读一些,似乎思路行文更清晰,也更好理解。并且值得开心的是,EGA 1第二版有完整英译,现在我全都分享出来。

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...