·

MC自制模组之矿脉扩张(介绍篇)

发布时间:2024-12-01 20:36:09阅读量:44
普通文章
转载请注明来源

作为一个不经常玩MC的MC老玩家,在一年前回归MC后,看到别人弄的各种花样的模组,我萌生了做个属于自己的模组的想法。作为一个MC魔改的新手,刚开始尝试制作模组并不容易,一是网上搜到的资料参差不齐,二是修改过程中需要改哪些参数,有的需要自己摸索,三是修改过程中会出现bug需要多次重启游戏进行测试。

本篇文章算是我人生中的第一篇游戏文章,我选择分享之前我特别感兴趣的《矿脉扩张》模组。所谓矿脉扩张,顾名思义就是将原本的矿脉扩大数倍不止,达到取之不尽用之不竭的程度。这又是众所周知的懒狗生存🤣,该模组可以说十分对胃那种喜欢挖矿的玩家,并且搭配上连锁挖矿每挖一次就爆出一大堆经验,可谓是十分解压😁。

我玩MC的时候就是挖矿总是挖得不够爽,煤矿还好一些,别的矿尤其是一些比较稀有的矿,如钻石矿一下就挖完了。我很想体验一下那种暴富的感觉,无论什么矿,都一挖一大把,钻石套、下界合金套全都轻松凑齐,然后拿钻石块、下界合金块搭房子😇。

于是有次在网上浏览模组时,我发现了有人分享了矿脉扩张模组,我第一次知道原来连矿脉分布都可以修改,当我怀着兴奋和期待试过好几个模组,最后结果都不如我所愿。网络上的矿脉扩张模组首先很少,并且矿脉扩张的幅度很小,完全没达到我想象的效果。同时,有的模组只是扩张了某个单一矿脉,如下界合金,其它都没变。本着既然别人没有做我想要的,那就自己做个自己喜欢的想法,我下手DIY了一个自己的矿脉扩张模组。

模组效果图如下:

首先更多的煤矿石,以及数不清的绿宝石矿,再也不用担心跟村民们交易不够绿宝石啦😁!接着,你可以看到矿脉中夹杂着煤块和绿宝石块。那是因为矿脉密度太高了,以致于都凝结成固体了😎。接着铁矿也是在地面上即随处可见,再也不用”下矿“就能得到铁了,或者说以后在地表也能下矿啦😏!

在地表上矿都已经多到溢出来了,那地底下岂不是更离谱😎??!多图预警......

可见地底下,黄金遍地,钻石块满地像垃圾一样乱堆,远古残骸一大坨连在一起😇。加上连锁挖矿,一挖一大把,猛猛解压。不开连锁挖矿,给你锻炼手力和耐力,看你能挖多久挖多少😄。

勤劳矿工一天下来,收获满满🤗!

这么多东西,得用多少个熔炉才够烧啊??😱

终于实现了拿钻石块、绿宝石块、矿石建东西的梦想啦😃!

本篇完,在下篇中我将会分享矿脉扩张模组的技术细节。关于模组下载,请看MC自制模组之矿脉扩张模组下载,感兴趣的小伙伴可以下来玩玩😃。

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

2024-11-22凌晨:弦圈最近两周更新情况

在上篇弦圈11月10日上下更新计划:小金库、打赏等功能,我提到会更新网站多个功能。原本以为这些功能最多一周就能全部写完,结果当我真正开始写,才发现自己完全低估了这些功能实现的难度,以及所需要耗费的时间。而且由于我的完美主义倾向,导致我比原计划多开发了好几个功能,比如说编辑器插入公式、交易中心、收藏党最喜爱的收藏夹等。因为我想反正都大更新了,那干脆就更新得多一些,把以前埋的坑都填上。再然后支付功能比我想象中的要难得多,这不仅仅指代码难写,还包括支付宝的审核等问题,人事问题上也耗费了不少时间。在这里忍不住吐槽一下支付宝和微信支付,这国内两家巨头技术文档写的是真烂、真水。多少年了,支付宝支付SDK的demo示例还是Java、PHP,Python压根没写,只能自己摸索然后网上找到些零散的资料。微信支付先是需要微信认证强制每年收费300元,然后文档也是写得不清不楚。反正目前网站就暂时只支持支付宝吧,之后再把微信支付补上吧,因为真的被恶心到了。总之如今写了快两个星期了,这些功能终于要完成了,预计明后天就能上线测试。网站也完全没更新,也找不到人帮忙更新,只能先放着了。之后我会发一篇更新日志,更加详细 ...

弦圈11月10日上下更新计划:小金库、打赏等功能

这几天忙于写代码完善网站功能,不太有空更新文章和内容。因为弦圈没有借助任何建站工具和博客框架,是我自己前后端一起从零开始写的,因此开发得会比较慢,请谅解。。。目前计划上线功能首先就包括,前面弦圈更新日志:关于智力值和金币提到的小金库。获取金币的机制是:智力值存入银行(叫时空银行time bank?),然后根据日利率每天产生相应的金币。下图为测试画面其次为了让网站能够更好的运作下去,从而给大家提供更好的服务,我计划引入盈利功能。所谓盈利功能即是用户通过弦圈来获得收益的相关功能,包括打赏功能、接广告功能、接悬赏功能。这些功能主要是为了鼓励大家为社区做贡献,并且让需要得到帮助的人更容易获得帮助(毕竟大佬们忙得很,不会轻易帮助你解决问题)。具体规则暂定如下:想要让弦圈的用户能赚钱,那弦圈必须自己先能赚到钱,目前我计划引入弦圈广告和用户交易中心。至于弦圈广告,我打算采用信息流广告、侧边栏广告、文章内嵌广告,拒绝弹窗之类遮蔽视线的广告,因此不会影响用户体验。最后我还得把之前留的坑——创作中心给填上,就是一个给创作者的方便管理内容、查看数据的模块。测试画面如下:尽情期待😇

Grothendieck经典著作:代数几何原理EGA 1(1971第二版)法语+英译

在前面几贴中,我已经分别分享了Grothendieck的代数几何三部曲EGA、SGA、FGA,链接如下:代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列(1)代数几何教皇Grothendieck经典著作:代数几何讨论班SGA法语原版全系列代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版但其实EGA 1还有1971年的第二版,Grothendieck在EGA 1第二版中更新了一些内容,因此一些概念定义会与第一版中有出入。原本我也是不太知道EGA竟然还会有第二版,直到后来有次看文献时,发现作者引用了EGA 1(1971)才知道有这一版本。对比EGA 1第一版跟第二版,感觉第二版要比第一版更好读一些,似乎思路行文更清晰,也更好理解。并且值得开心的是,EGA 1第二版有完整英译,现在我全都分享出来。

史上最年轻菲尔兹奖得主Serre的经典作品:代数凝聚层Faisceaux algébriques cohérents

法国数学家让-皮埃尔·塞尔(Jean Pierre Serre)是迄今为止最年轻的菲尔兹奖得主,他获奖时年仅27岁,被国际数学领域誉为“在世最伟大”的数学家之一,他在代数拓扑学、多复变函数论、代数几何与数论方面取得了开创性的、历史性的巨大贡献。 Serre与被誉为代数几何的上帝的Grothendick是亲密无间的学术伙伴,他们两个的数学风格可以说是截然相反的,相较于Grothendick更喜欢构造宏大的理论,Serre更喜欢解决具体的问题。而两者的合作碰撞出了无数的火花,诞生了无数经典的理论。具体可见 明星崛起 - 宛如来自空无的召唤。而代数凝聚层(Faisceaux algébriques cohérents)这本书是Serre的经典著作之一,讲述的是层论方法在代数几何中的应用。本书原版是法语写的,后来被翻译成中英文版本。现在我将自己收藏已久的中英法三个版本,都分享出来给有需要的人,欢迎感兴趣的收藏收藏!PS:第一个附件为法语版,第二个为英语版,第三个为中文版。

代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版

关于Grothendieck的代数几何三部曲EGA、SGA、FGA的法语原版,我已经分享了两部,分别在 代数几何教皇Grothendieck经典著作:代数几何原理法语原版全系列(1)与 代数几何教皇Grothendieck经典著作:代数几何讨论班法语原版全系列 中可以下载。没想到相比于EGA,大家对SGA的热情非常高涨,可能是EGA已经出版了完整的中译,并且EGA知名度最高,资源也更好找。而SGA不同,知名度小一些,并且阅读难度也大一些,同时资源相对稀缺不好找,目前也没有完整的中译。现在我打算把三部曲中存在感最低的FGA也分享出来,这次我十分意外的发现FGA时隔多年居然有英文翻译版了,这是十分令人惊喜的。FGA法语全称Fondements de la Géometrie Algébrique,英文翻译为Foundations of Algebraic Geometry,即代数几何基础。这本书我也没仔细看过,几年前拿到手时,也只是粗糙无比的扫描版,扫描的书还是上个世纪用打字机打出来的,阅读观感非常不好(可能是不习惯吧)。虽然如今FGA中的大部分内容,学代数几何的人应该都会知道,如desc ...

一个关于定义域光滑不变量的问题

我的提问:定理 22.3(定义域的光滑不变量)令$U \subset\mathbb{R}^n$为一个开子集,$S \subset\mathbb{R}^n$为一个任意子集,并且$f : U \rightarrow S$是一个微分同胚。那么$S$在$\mathbb{R}^n$中是开集。我无法理解为何集合$S$在$\mathbb{R}^n$中并不是自动开的。映射$f$是一个微分同胚,这意味着它在两个方向都是连续的,所以$S$是开的。回答:首先你所知道的是$U$中的开集$V$满足:$f(V)$在$S$中开,不是$f(V)$在$\mathbb{R}^n$中开。所以$f(U)=S$是在$S$中开。那个推断是说接着$f(U)=S$自动在$\mathbb R^n$中开,这是不一样的并且不是自动的。它需要证明。PS:这里说的是拓扑学中关于开集的一个重要盲点,即开集是相对的。尤其是考虑某个拓扑空间中的子集,要弄清楚究竟是在子集内开,还是在全空间内开。