··
10
·
2024-11-05 11:12

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。

怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。

不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然understand nothing。

如果您要查看本帖隐藏附件请回复

添加评论
评论区
coroneless
·
16 hours ago

费马大定理

0
回复

弦圈热门内容

可代表层的满射性

我的提问:令$S$为一个基概形,并令$(Sch/S)_{fppf}$为一个大fppf景。令$U$为一个$S$上的概形。假设存在一个满射态射$\Phi_{U}:U\rightarrow U$。那么我们能证明导出的层态射$h_{U}\rightarrow h_{U}$局部满射的?这看起来是错误的。注意到$h_{U}={\rm{Hom}}(-,U)$是一个可代表层。一个$(Sch/S)_{fppf}$上的层映射$F\rightarrow G$是局部满射的,如果对每个概形$U\in{\rm{Ob}}((Sch/S)_{fppf})$和每个$s\in G(U)$,都存在一个覆盖$\{U_{i}\rightarrow U\}_{i\in I}$,使得对所有$i$,$s|_{U_{i}}$在$F(U_{i})\rightarrow G(U_{i})$的像中。回答:令$S:={\rm Spec}(k)$为一个域,并且令$U={\rm Spec}(k[t]/t^2)$。环$k[t]/t^2$是一个$k$-代数,并且存在一个$k$-代数映射$k[t]/t^2\to t$,其将$t$打到$0$,所以我们得到 ...

正弦函数的幂级数展开是否是柯西序列?

考虑正弦函数的幂级数展开$$S=(\sum_{i=0}^{j}\frac{(-1)^{i}}{(2i+1)!}r^{2i+1})_{i\in\mathbb{N}}, 0\leq r\leq2\pi。$$那么$S$是否是柯西序列?令$\varepsilon>0$。是否存在$N>0$使得对于任意$m,n\geq N$,都有$$\left|\sum_{j=n}^{m}\frac{(-1)^{j}}{(2j+1)!}r^{2j+1}\right|\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}<\varepsilon?$$证明1:众所周知,$\sin x$的幂级数展开在任意地方都是收敛的(你可以使用比值审敛法来证明这个结论),然后所有收敛数列都是柯西的,因此$S$是柯西序列。证明2:既然这是研究一个紧致集里的级数,最简单的方法是用下面的不等式:$$\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}(2\pi)^{2j+1}<\varep ...