·

Note on perfectoid spaces

发布时间:2024-04-26 21:18:04阅读量:882
学术文章
·
笔记
转载请注明来源

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.

§1. Adic Spaces

Definition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.

§1.1. Morphisms of finite type.

The material can be seen in [SP] and [Hu1].

First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).

Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.

  1. We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.
  4. We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation.

Compared with the above definition, we reach to the case of adic spaces.

Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.

  1. We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.

Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.

§1.2. Unramified, smooth, and étale morphisms.

For definitions of morphisms of finite type and finite presentation, see §1.1.

First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).

Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagram

where $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.

The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.

Definition 1.5. Let $R\rightarrow S$ be a ring map.

  1. We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.
  2. We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.

Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.

Definition 1.6 ([Hu1, Definition 1.6.5]).

  1. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.
  2. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.

Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.

§1.3. Berkovich’s analytic spaces.

We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].

§1.3.1 Underlying topological spaces.

First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.

Definition 1.7.

  1. A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.
  2. A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.

Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.

Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.

Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.

Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.

§1.3.2 The category of analytic spaces.

Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.

If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:

(i) $\mathscr{M}(K)\in\Phi_{K}$.

(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.

(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.

(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.

(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.

Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.

The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).

From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.

Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.

Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.

Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.

§1.4. Rigid analytic varieties.

The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].

§1.4.1 $G$-topological spaces.

As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].

Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:

  1. If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.
  2. If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.
  3. If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.

Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].

We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.

Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists of

  1. a category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, and
  2. a set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.

Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.

We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.

§1.4.2 Presheaves and sheaves on $G$-topological spaces.

The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.

Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$

If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.

Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.

Morphisms of presheaves or sheaves are just natural transformations of functors.

Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.

Hence, we can define presheaves and sheaves on a $G$-topological space.

Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.

The following kind of Grothendieck topology is of special interest to us.

Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:

$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.

$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.

$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.

§1.4.3 Locally $G$-ringed spaces and analytic varieties.

The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.

Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.

Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:

(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.

(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.

We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.

Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.

A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.

Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.

Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.

In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.

Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:

(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.

(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.

§2. Almost mathematics

In this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].

References

  1. [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
  3. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
  4. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
  5. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
  6. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
  7. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
  8. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
  9. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
  10. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
  11. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  12. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
  13. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
  14. [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
  15. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
  16. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
  17. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
  18. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.


0 人喜欢

评论区
Ricciflows
Ricciflows

We apologize that this note has ended halfway because the author had quit mathematics😭😭

2024-08-14 13:54:14 回复

弦圈热门内容

给Web开发者写的React Native简介,React Native与React的区别与对比(1)

React Native是React下的一个跨平台框架,能让你用熟悉的React JSX语法来进行跨平台开发。所谓的跨平台开发是如今的一种趋势,即用同一种语言来同时进行Web端、手机端安卓与IOS、桌面端Windows、MacOS、Linux的开发。这样不仅能极大的提高开发效率,同时大大增加了代码的可维护性,节省了大量的成本。然而React Native虽然带个React,用的也是JSX语言,却跟React有很多不一样的地方。因为React Native不仅面向网页端,还面向手机端APP,而React Native的代码会直接编译为native原生代码。在本文中,我将会列举说明几个React Native的不同之处。首先,在React Native中我们不能像React那样直接使用HTML语言,因为无论是Android还是IOS,都无法编译HTML语言。因此,我们需要使用React Native提供的组件。在React Native中,如果你想要写<div>,则需要换成<View>。View组件在Web端会被编译成<div>,而在Android和IO ...

React Native UI库介绍与对比

React Native的生态与React.js相比,没那么丰富,或者说手机端的生态本身就跟Web端相差甚远。React.js作为Web端虽然生态丰富,但由于其JS库大多数都不能直接用在React native中,因此很多在Web端存在诸多解决方案的问题,如代码块高亮、渲染数学公式,在手机端都难找到合适的办法。React Native的UI库,其实可以选择的并不多,不像Web端百花齐放,选个UI库都能选择困难症。在本文,我将会介绍几个我所知道的React native UI库,其中有几个我是用过的。1. React Native Paper这是一个Material Design风格的UI库,在GitHub拥有13.4k个stars,官方文档👉React Native Paper。该库安装步骤简单,组件使用以及自定义也容易,唯一的缺点就是组件不够多,有些场景需要你另外补充其他库来满足需求。React Native Paper应该是React native唯一一个Material Design UI库,该库能够跟React native navigation整合,构建Material风格的 ...

🇪🇸 3.3 阿维拉

​宛如异世界城镇般的城市,中世纪时期的巨大的围墙将整个旧城区彻底包围,竟然没有经过火药的洗礼,一直保存至今。尖顶城垛却有着半圆形的塔楼,很明显是融合了穆斯林世界和基督教王国的风格,印证了阿维拉在再征服运动中的战略地位。不知道巨人里的玛利亚之墙灵感会不会是来自这里()没有过度的商业化和游客旅行团,所有的古迹都显得如此纯粹。以及三月正是赏樱的季节,没想到在西班牙也能欣赏到灿烂绽放的樱花,这几天在卡斯蒂利亚拉曼查的赏樱体验也是十分独特,比起虽然是漫山遍野但却人山人海的樱花园,我更喜欢一个人独自欣赏公路旁孤芳自赏无人问津的野樱。具有东方色彩的樱花竟然能与西式的城墙塔楼同框,有一说一确实有种奇妙的违和感()不过说起来不知道什么时候能有机会在樱花祭再去一次日本呢😭

由于备案需要,xianquan.net暂时关闭,原地址manitori.xyz可正常访问。由于苹果开发者账号费用过高,弦圈APP IOS版暂不支持。

这几天,我在给弦圈新域名xianquan.net以及弦圈APP备案,其中域名备案为了让管局通过,需要我暂时关闭掉xianquan.net,多有不便尽请谅解。弦圈的原地址manitori.xyz不受影响,可正常访问,然后未来manitori.xyz是不会丢弃的(见弦圈更换新网址xianquan.net,原地址manitori.xyz保留)。接着,这几天我原本打算把弦圈APP IOS版也给上线了,可惜苹果太吸血了,每年费用比微信还得高一半。因此我决定暂时只支持弦圈APP安卓版,IOS版等以后再说吧,虽然代码写了,但是无法打包IPA文件,而且就算打包完成也无法安装到苹果手机。最后不得不说,目前访问弦圈还是有点卡,虽然之前已经优化过了(最近有人反馈网站卡、打不开,我自己也试过这种情况,已再次对弦圈进行优化),但人多了还是会明星感觉到卡。原因目前也基本确定,之后我会再次更换并升级服务器,而更换服务器就需要迁移数据,迁移数据过程需要关停服务器。为了将影响降到最低,我选择关闭服务器在晚上进行,错开访问高峰。

弦圈APP已开发完成,准备发布

经过两个月的漫长艰难开发,大家期待已久的弦圈APP终于开发完成,目前正在准备发布的工作。马上弦圈APP的第一个版本就要跟大家见面了,暂时先推出安卓版,之后测试完苹果手机再推出IOS版。目前弦圈APP的核心功能已经基本开发完毕,包括:写文章、发帖子、回答问题、创建圈子、看文章、看书、看帖子、看词条、圈子、看问题和回答、发布评论与回复、点赞与踩、收藏夹、关注用户、搜索、用户中心、个人主页、设置、消息中心等等。但是仍然有一些未完成的功能,这些功能计划之后慢慢更新吧,它们包括:创建词条、写书、提问、任务中心、商店、赞赏、钱包与充值、交易中心、签到等等。上面提到的都是大的功能模块,下面我就提及一下APP一些细节的问题,这些问题虽然小,但也同样重要。与网页端弦圈不同,手机端弦圈APP使用markdown编辑器,用于文本格式、图片、链接等输入。关于markdown语法可自行百度,事实上markdown语法写起来比富文本要方便。至于为啥使用markdown编辑器,原因如下:首先APP跟网页端(Web端)有很大的不同,这使得想要跟Web端一样用富文本编辑器会变得困难。绝大多数现有的富文本编辑器都是基于W ...

狭义相对论核心问题

狭义相对论(Special Relativity)是爱因斯坦在1905年提出的理论,它主要为了解决经典物理学(牛顿力学和麦克斯韦电磁理论)之间的矛盾,并重新定义时间、空间、质量和能量等基本物理概念。以下是狭义相对论旨在解决的核心问题:1.经典力学与电磁学的矛盾牛顿力学的相对性原理:牛顿力学认为,在惯性参考系(匀速直线运动或静止的参考系)中,物理定律的形式保持不变(例如,在均匀运动的火车上做实验,结果与静止时一致)。麦克斯韦方程的“特殊地位”:麦克斯韦方程组预言了光速的恒定值,但经典物理认为光速应遵循伽利略变换(即速度叠加)。例如,若你以速度 v 追赶一束光,光速对你来说应变为 c - v ,但这与实验观测矛盾。矛盾的核心:牛顿力学的伽利略变换与麦克斯韦方程组的不兼容性,引发了物理学基础的危机。2.以太理论的失败以太假说的背景:19世纪物理学家假设存在一种名为“以太”(aether)的绝对静止介质,光波通过以太传播(类似声波在空气中传播)。迈克尔逊-莫雷实验(1887年):实验试图通过测量地球在以太中运动引起的“以太风”来验证以太的存在,但结果却表明光速在不同方向上始终相同,与以太假说矛 ...

婚礼拍摄流程

设备:a7m3 + 28-75 f2.8 + 棍灯 + 闪光Tip 1: 要电梯卡:摄影师可以在酒店前台说明自己是拍摄婚礼的,通常可以拿到电梯卡,方便进出。提前联系:如果是朋友关系,可以要伴娘的联系方式,方便沟通,避免被堵在酒店楼下;但如果是工作关系,则不建议这样做,以免引起不必要的麻烦,可以提前要电梯卡。Tip 2: 收费标准:在二三线城市,婚礼摄影的费用一般在1000-1500元之间;在一线城市如北京、上海、广州、深圳,费用则从1500元起,上不封顶。影响因素:收费标准主要取决于摄影师的样片质量和实际拍摄水平。Tip 3: 自报家门:摄影师见到新娘和伴娘时,应先自我介绍,表明身份。拍摄环境:新娘可能会询问房间布置是否适合拍摄,如果光线不足,摄影师需要自带灯光;如果房间空间狭小,则需要使用广角镜头。Tip 4: 静物拍摄:先拍摄婚鞋、婚戒、婚书等静物,记录这些细节。场景布置:观察房间布置,拍摄好看的地方,尤其是新人用心布置的部分。新娘化妆:拍摄新娘化妆的过程,留意光线充足的地方,适合摆拍。贵重物品拍摄:拍摄婚戒等贵重物品时,一定要有主家人在场,避免后续出现问题。Tip 5: 晨袍拍摄 ...

1月26日弦圈APP进度更新

最近这段时间,我都把时间花在开发弦圈APP上了。这个过程可谓是历经波折,开发过程中我曾多次更换框架,每更换一次就意味着得重新从零开始写,而更换完框架后又因为遇到某些难以解决的问题,又重新回到原来的框架。总之,如今经过两个星期的开发,终于逐渐成型,但还是有很多地方未实现的。目前弦圈APP,已实现功能包括:登陆注册、看文章、看帖子、看问题和回答、看百科词条、圈子、发布评论与回复、点赞与踩、关注用户等。未完成功能包括:用户主页、个人中心、消息中心、词条部分功能(如目录)、写文章、发帖子、写书、提问和回答、看书、签到、任务中心、交易中心等等。完成弦圈APP仍然任重而道远,因为弦圈从开发到上线就写了六个月代码,再加上上线至今又经过半年陆陆续续的更新,如今的弦圈已然代码规模已经不小。而我从零开始写APP,用的还是新技术,不亚于从零开始重写一遍整个弦圈。这工作量对于一个人来说,实在是太大了。同时,我在开发APP的过程中,也发现弦圈网站的一些bug,也来不及修复。最后我就发一发弦圈APP的测试图片吧。

写作小标题

一 抓好思想教育,“主旋律”越唱越响1.一以贯之,强化思想政治引领。集中学习抓引导,小组共论鼓干劲,个人自学促提升。2.上下同步,提升青年精神素养。 以上率下强推进,调研座谈保落实,简报交流取真经。3.双效合一,深化优良传统教育。先辈传承长士气 专题培训固根本 时空沉浸坚信仰,青言青语润人心。二 强化职能定位,“主力军”越建越强1.多维发力,围绕中心服务大局。安全生产不懈怠,优质服务不断档,创新创效不停歇。2.齐头并进,践行央企责任担当。乡村振兴亮实效,低碳生活有妙招。3.统筹谋划,志愿服务成效显著。冬奥保障显担当,旺季生产加满油,蓝天课堂掀新篇。三 提升服务能力,“主心骨”越来越硬1.多措并举,有效助力青年发展。基层调研知实情,青春助力有延续。2.对准焦距,关心关爱青年成长。新春送福暖人心,圆梦助力解难题,双节关爱有温度。3.双轮驱动,持续推动争先创优。文艺文创树形象,青年才俊扬志气。四 夯实团建基础,“主阵地”越筑越实1.分类施策,健全制度合规管理。完善制度粗管理,人才培养筑根基。2.挖掘典型,组织建设活力十足。先进典型展风采。

共青团工作要点

一、政治建设:思想政治引领:注重加强团员政治教育和青年思想政治引领,以习近平新时代中国特色社会主义思想为指引,深入学习习近平总书记关于青年工作的重要思想,坚持党建带团建,扎实开展团员和青年主题教育,深入学习党的二十大精神和团十九大精神,有针对性开展“青年大学习”教育培训。战略文化传导:结合集团战略和本单位觉政工作重点,依托青年论坛,组建青年讲师团,教育引导广大团员青年传承弘扬集团自身优良传统、红色精神,加强宣讲,积极传播企业文化理念。舆论宣传工作:田青工作有宣传阵地、有宣传队伍,持续加强宣传平台建设,团青活动开展丰富多彩的宣传工作。二、作用发挥国绕中心、服务大局:常态化开展青年籍神素养提升工程、主题实践活动,引领团员青年在安全生产防范风险、深化改革等领域发挥生力军与突击队作用,保障生产、运行、服务、创新等方面工作平稳有序。青年文明号活动:国绕持续打造世界一流产品服务水平,推进青年文明号创建,积极组织青年文明号开放周主题实践话动,创建活动特色鲜明,创建工作有制度、有记录、有成效,加强对往届青年文明号监督工作。青年志愿者活动:以青春之力服务-国之大者”,开展形式多样的志愿者活动及社会公益活 ...

未来所有人都能被一种名为‘复活术’的仪式复活,而我被复活进了一座神秘的监狱,在这里每个人无时无刻都要接受无比残忍的折磨...

在未来的地球上,诞生了一种名为“复活术”的神奇仪式,所有人都能被该仪式复活,且不需要付出任何代价。你只需要在任意地方画出一些玄奥的几何图案,然后随意念出任意条件,如果有人满足你所说的条件,那么这个人就会马上被复活。如果满足条件的不止一个人,那么所有满足条件的人都会被同时复活。于是,死去的科学家、伟人们都被人们争相复活,人类的科技水平在短短数年内就得到了飞速发展。同时地球的人口也开始了指数型暴涨,到了2080年,全世界人口就已经到达400亿!因为人口的暴涨资源开始紧缺,加上死亡已经不再忌讳,很多人开始胡作为非,有些无聊的人甚至把烧杀抢夺、花样自杀当作自己的日常生活。于是各国政府纷纷出台《复活法》,限制复活术的使用,每个人禁止生育后代,以及禁止自杀,所有自杀者复活后会被直接拘禁。就这样,社会秩序的混乱才逐渐消停了一些。虽然人类距离抵达一级文明的水平还有很长一段时间,但这样史无前例的科技发展速度还是让大家沉浸在了征服宇宙的未来无尽幻想之中,却殊不知一场同样史无前例的浩大危机正在逼近......不知道多少年过去,在仙界死去的陈默也被复活术复活后,就发现自己已经置身在这座名为“通天塔”的监狱之中 ...