·

Why Showering Daily Might Be Bad for Your Skin

发布时间:2024-08-23 13:51:08阅读量:152
普通文章
转载请注明来源

When you finally get home after a busy day, nothing seems more appealing than taking a long hot shower and washing your stress away. But spending too much time in the shower might actually cause many skin problems you’ve been trying to avoid. As relaxing as it is, showering too often might do more harm than good for your skin.

1. It may give you premature wrinkles.

You’ve probably noticed that your fingers often get wrinkly after you’ve spent too much time in the shower. This happens because hot water strips moisture from your skin, causing it to look overly dry. When you shower too often in hot water, your skin loses sebum, which is vital for keeping it healthy and glowing.

2. Your skin might become flaky.

“This is how my face looks right after a shower.”

Your favorite shower gel surely smells amazing, but artificial ingredients in it might be damaging for your skin. Many soaps and body washes contain ingredients that are too harsh for your skin, and in combination with hot water, it may cause your skin to get scaly. Using a rough towel after shower may also cause your skin to become overly dry.

3. It may make existing skin issues worse.

If you have certain skin conditions, such as rosacea, dermatitis or psoriasis, then taking good care of your skin is crucial for keeping the issue under control. While using gentle skin cleansers might help to alleviate the symptoms, washing your face too often may only make the condition worse. There are essential fatty acids that form the protective top layer of your skin, and taking hot showers might strip this layer, causing the skin to become even more sensitive.

4. It might cause your skin to itch.

“These skin red patches appeared on neck and eye area after showering.”

While taking a steamy shower after a long day feels relaxing, it might work the other way around for your skin. Overly hot water can cause skin inflammation, which can eventually lead to redness and itching. And because hot water dries out your skin, it might make it to produce more oils, causing your skin to look greasy.

Do you think it’s necessary to shower every day? How often do you take showers?

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

基变换映射$U\times_{X}X\rightarrow U\times_{Y}Y$

我的提问:令$X,Y$是概形。令$X\rightarrow Y,X\rightarrow X, Y\rightarrow Y$为概形态射。为什么态射$U\times_{X}X\rightarrow U\times_{Y}Y$是$X\rightarrow X\times_{Y}Y$通过$U\times_{Y}Y\rightarrow Y$的基变换。这是我尝试的图,其中三角形是交换的。但是我发现$(U\times_{Y}Y)\times_{Y}(X\times_{Y}Y)=U\times_{Y}X\times_{Y}Y=U\times_{Y}X$,即我无法得到想要的$U\times_{X}X$。我这是犯了什么错误?这是问题的上下文,来自朱歆文的论文Affine Grassmannians and the geometric Satake in mixed characteristic (arXiv link):引理 A.2. 对任何代数空间的平展态射$X\to Y$,由$\sigma_X$导出的相对Frobenius态射$X\to X\times_{Y,\sigma_Y}Y$是一个同构。证 ...

正弦函数的幂级数展开是否是柯西序列?

考虑正弦函数的幂级数展开$$S=(\sum_{i=0}^{j}\frac{(-1)^{i}}{(2i+1)!}r^{2i+1})_{i\in\mathbb{N}}, 0\leq r\leq2\pi。$$那么$S$是否是柯西序列?令$\varepsilon>0$。是否存在$N>0$使得对于任意$m,n\geq N$,都有$$\left|\sum_{j=n}^{m}\frac{(-1)^{j}}{(2j+1)!}r^{2j+1}\right|\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}<\varepsilon?$$证明1:众所周知,$\sin x$的幂级数展开在任意地方都是收敛的(你可以使用比值审敛法来证明这个结论),然后所有收敛数列都是柯西的,因此$S$是柯西序列。证明2:既然这是研究一个紧致集里的级数,最简单的方法是用下面的不等式:$$\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}(2\pi)^{2j+1}<\varep ...

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \B ...

高智商与心理疾病仅“一墙之隔”?

“从天才到疯子,仅有一步之遥。”这是英国诗人约翰·德莱顿的一句名言。世界上许多有才华的人都与精神疾病沾边,这让科学家对这个问题很有兴趣。一直以来,他们都想找到一个答案,高智商与心理疾病之间是否存在一定的相关性?最近,克里蒙特学院联盟培泽学院的科学家在心理学期刊Intelligent发表了一项研究成果,他们发现,高智商人群罹患焦虑、抑郁、自闭等症状的比例要高于普通大众。高智商与精神疾病这项研究的样本比较特别,培泽学院的科学家选择了3715名门萨俱乐部成员,测试他们的精神健康。门萨俱乐部是世界顶级智商社团组织,目前它的会员遍及全球100多个国家和地区,人数高达十几万,智商均在130以上。但是,测试结果显示,其中约有20%的会员患有抑郁症和焦虑症,而在普通人群中,这一比例只有10%。不仅如此,他们还发现,门萨会员似乎也更容易患哮喘、过敏和免疫力底下等疾病。他们试图回答一个问题,高智商是否会加剧心理反应进而影响身体的免疫水平?根据《每日邮报》的报道,研究人员的解释是,高智商人群之所以患精神疾病的比例更高,也许是因为他们过于亢奋、敏感,导致情绪失调。而已有的科学研究认为,心理问题可能引发身体的炎 ...