·

$\mathbb{R}$的有限域扩张是$\mathbb{R}$或者同构于$\mathbb{C}$

发布时间:2024-10-12 17:01:23阅读量:95
普通文章
转载请注明来源
写作类别

我们需要证明的命题如下:

令$F$为包含$\mathbb{R}$的任意一个域,它满足性质$\dim_{\mathbb R}F < \infty$。然后我们有$F \cong \mathbb R$或者$F \cong \mathbb C$。

下面我们给出三个证明,其中第一个证明最为简洁,最后一个最为复杂。

证明:由代数闭包的唯一性,我们有嵌入$F \hookrightarrow \mathbb C$,因此我们有$\mathbb R \subset F \subset \mathbb C$。然后命题结论可由$[\mathbb C:\mathbb R]=2$得出,因为这排除了真中间域的存在。

证明2:因为$F$在$\mathbb{R}$上是有限维的,它在$\mathbb{R}$上代数。这是关于域扩张的一个基本事实:如果$a\in F$,然后$1,a,a^2,\dots,a^n$在$\mathbb{R}$上线性相关,这里$n=\dim_{\mathbb{R}}F$。所以$F$的每个元素是一个$\mathbb{R}$系数多项式的根。

如果$-1$在$F$中不是一个平方,我们可以添加一个平方根$j$(它满足$j^2=-1$),因此我们有在$F$上有限维的$F[j]$,并且由于维度公式在$\mathbb{R}$上有限维。现在$\mathbb{R}[j]$同构于$\mathbb{C}$,并且我们有链$\mathbb{R}\subseteq \mathbb{R}[j]\subseteq F[j]$,该链告诉我们$F[j]=\mathbb{R}[j]$因为$\mathbb{C}$是代数闭域。所以$F=\mathbb{R}$。

除此之外,如果$-1$在$F$是一个平方,那么$F$在代数封闭且因而同构于$\mathbb{C}$的$\mathbb{R}[j]$上代数(这里$j^2=-1$)。所以$F=\mathbb{R}[j]$并且$F\cong\mathbb{C}$。

证明3:令$x\in F\setminus\mathbb{R}1$。因为$F$是有限维的,假设它的维度是$N\geq1$,那么$N+1$个元素的向量集$(1,x,x^2,\ldots,x^N)$是一个线性相关的向量集。因此,存在某些实数$\alpha_0,\ldots,\alpha_N$,他们满足$(\alpha_0,\ldots,\alpha_N)\neq(0,\ldots,0)$,并满足$$\alpha_N x^N+\cdots+\alpha_1x+\alpha_01=0。$$

现在考虑对应的多项式$P\in\mathbb{R}[X]$:$$P=\alpha_N X^N+\cdots+\alpha_1X+\alpha_0。$$

现在,这个多项式可以分解为$\mathbb{R}[X]$中不可约多项式的乘积;并且由代数基本定理,我们知道$\mathbb{R}[X]$中不可约多项式的度数为1或者2。不失一般性,我们可以假设$P$有如下形式:$$P=X^2+aX+b。$$

(我们可以去掉$P$度数为1的情况,因为这意味着$x\in\mathbb{R}1$。)

既然$P$是不可约的,我们有$a^2/4-b>0$。现在定义$F$的元素$j$为$$j=\frac1{\sqrt{a^2/4-b}}x+\frac a{2\sqrt{a^2/4-b}}1。$$

我们有:$$j^2=\frac1{a^2/4-b}\left(x^2+ax+\frac{a^2}41\right)=\frac1{a^2/4-b}\left(-b+\frac{a^2}4\right)1=-1$$因为$P(x)=x^2+ax+b1=0$。

观察到$F$有且仅有两个平方等于$-1$的元素,即$j$或者$-j$。实际上,如果$u\in F$,那么下面的分解式成立:$$u^2+1=(u+j)(u-j)$$因为$F$是交换的,且因为$F$是一个整环(因为$F$是一个域),$$u^2+1=0\iff u=-j\ \text{or}\ u=j。$$

我们现在可以通过证明$F=\operatorname{Span}\{1,j\}=\mathbb{R}1\oplus\mathbb{R}j$,来得出结论。首先,观察到向量集$(1,j)$是线性无关的,因为$j\not\in\mathbb{R}1$因为$j^2=-1$。现在,先前的讨论表明,给定一个元素$y\in F\setminus\mathbb{R}1$,存在一个度数为2的不可约多项式$Q\in\mathbb{R}[X]$,设$Q=X^2+\alpha X+\beta$,它满足$Q(y)=0$。然后我们前面的计算表明,元素$$u=\frac1{\sqrt{\alpha^2/4-b}}y+\frac\alpha{2\sqrt{\alpha^2/4-b}}1\in F$$有一个平方等于$-1$,因此,这个元素要么是$j$,要么是$-j$。所以,$$y=-\frac\alpha2\,1\pm\sqrt{\alpha^2/4-b}\,j$$并在任何情况下都属于$\operatorname{Span}\{1,j\}$。因此,$F\subset\operatorname{Span}\{1,j\}$,然后有$F=\operatorname{Span}\{1,j\}$。现在,很显然$F$同构于(域同构)$\mathbb{C}$。

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革

据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分, ...

Algebraic Topology I: 对教材跟概念的一些论述

关键词:Homotopy, Homology, Groupoid, Foundamental Group, Van Kampen Theorem, Covering Space, Covering Projection, Fibration with unique path lifting, Cofibration.Tammo tom Dieck 在他的代数拓扑教材中写了非常漂亮的前言,在点出代数拓扑精髓的同时还包含一些形而上学的哲思,并且简略地介绍了代数拓扑里面的两个核心词汇,同伦(homotopy) 跟同调 (homology)。我简要地部分翻译如下:代数拓扑是连续数学跟离散数学交相辉映的学科。在连续数学里面,我们用拓扑空间和连续映射这样普遍的形式语言将其公理化。而离散数学则是被我们用来表达代数和组合概念的。在数学语言中,我们用实数来概念化连续形式,但我们建立实数时却是要用到整数。下面举个例子,我们直觉地认为时间是一个连续的没有间断的流动过程,是由一系列不停止的瞬间后继构成的。但在实践中,我们却使用被定义为有周期性的离散模型工具跟自然过程。同样地,我们意识到空间是一个连续体,但我们 ...

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫 ...

英语不好,读不懂英文数学教材怎么办?

问题:最近我得到一本英文 GTM1 的 PDF。起初我截图发到微信上,再通过机翻来阅读。后来觉得麻烦,就打印下来。结果它马上给我一个下马威。第三节开头给了一个定义,然后就出现了一个长达三行半的复杂句子,我辛辛苦苦把每个不认识的词都标出来,但是除了开头的「定义 3.1 是不完全的」,后面我就不知道它说的是什么了。而且我发现书里面有很多很多我不认识的词,一个一个查只怕一年也读不完。经常在知乎看到「数学书是所有英文教材里文字最好懂的」这样的评论,大概我的英语水平太差了吧。(我的英语水平:我现在初三,120分的试卷一般考110~112)所以现在我应该怎么办?怎样比较快速地提高英语水平使得我能够看懂数学书。(补充一句:我的数学水平对看书不是很成问题)我的回答:看不懂英文怎么办?那就老老实实遇到不懂的单词,就查一下什么意思,然后拿个笔记本记下来,这样还能方便偶尔复习巩固记忆。每次遇到不懂的单词,就这样操作,时间长了有感觉了,就可以不记笔记了,遇到不懂的查,脑子过一遍,继续看,代入到语境中去理解。你是初三,真巧我看人生中第一本数学英文教材的时候也是初三,当时刚刚中考完,我还依稀记得当时看的教材是泛函 ...

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenk ...