·

阿基米德性质的乘法形式

发布时间:2024-10-18 16:31:20阅读量:68
学术文章
·
笔记
转载请注明来源

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?

实际上,我没能证明它等价于$\Gamma$有凸秩1

回答:你正确地叙述了阿基米德性质的乘法版本。

令$\Gamma$为一个满足阿基米德性质的有序乘法群。

假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。

(i). 如果$1\le y\in\Gamma$,存在$n\in \Bbb N_0$使得$y\le x^n\in H $。但是$H$是凸的,且有$\{1,x^n\}\subset H$和$1\le y\le x^n$,因此$y\in H$。

(ii). 如果$1>z\in \Gamma$,然后有$1<z^{-1}$,因此$z^{-1}\in H$由(i),因此$z\in H$。

所以$H=\Gamma$。

因此$\Gamma$唯一的凸子群是$\Gamma$和$\{1\}$。

附录。假设$\Gamma$为阿贝尔的是不必要的。非阿贝尔有序群是存在的。但是通过初等的方法(但不简便),我们可以证明如果$\Gamma$是一个满足阿基米德性质的有序群,则存在一个从$\Gamma$到加法实数子群的有序群同构。这表明$\Gamma$是阿贝尔的。

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

如何理解$\mathbb{Q}_{p}(p^{1/p^{\infty}})$?

我的提问:众所周知$\mathbb{Q}_{p}(p^{1/p^{\infty}})$被定义为$\bigcup_{n&gt;0} \mathbb{Q}_{p}(p^{1/p^{n}})$,意思是邻接所有$p$的$p$幂根($p$-power roots of $p$)到混合特征域$\mathbb{Q}_{p}$。然而,我不太懂这个符号的意思$\mathbb{Q}_{p}(p^{1/p^{n}})$。这是如何联系到$p$的$p$幂根的?为何在这个记号中,$p$的幂是$1/p^{n}$?我认为$\mathbb{Q}_{p}(p^{1/p^{n}})$是$\mathbb Q_p$的一个割圆扩张,其中$p^{1/p^{n}}$是$n$次单位本原根(primitive $n$th root of unity)。但是似乎这说不通。并且我在另一个回答中看到$\mathbb{Q}_{p}(p^{1/p^{n}})$是一个分歧扩张(ramified extension)。谁能告诉我在哪里可以了解$\mathbb{Q}_{p}(p^{1/p^{n}})$?回答1:根据定义,$\Bbb Q_p(p^{1/p ...

可代表层的满射性

我的提问:令$S$为一个基概形,并令$(Sch/S)_{fppf}$为一个大fppf景。令$U$为一个$S$上的概形。假设存在一个满射态射$\Phi_{U}:U\rightarrow U$。那么我们能证明导出的层态射$h_{U}\rightarrow h_{U}$局部满射的?这看起来是错误的。注意到$h_{U}={\rm{Hom}}(-,U)$是一个可代表层。一个$(Sch/S)_{fppf}$上的层映射$F\rightarrow G$是局部满射的,如果对每个概形$U\in{\rm{Ob}}((Sch/S)_{fppf})$和每个$s\in G(U)$,都存在一个覆盖$\{U_{i}\rightarrow U\}_{i\in I}$,使得对所有$i$,$s|_{U_{i}}$在$F(U_{i})\rightarrow G(U_{i})$的像中。回答:令$S:={\rm Spec}(k)$为一个域,并且令$U={\rm Spec}(k[t]/t^2)$。环$k[t]/t^2$是一个$k$-代数,并且存在一个$k$-代数映射$k[t]/t^2\to t$,其将$t$打到$0$,所以我们得到 ...

正弦函数的幂级数展开是否是柯西序列?

考虑正弦函数的幂级数展开$$S=(\sum_{i=0}^{j}\frac{(-1)^{i}}{(2i+1)!}r^{2i+1})_{i\in\mathbb{N}}, 0\leq r\leq2\pi。$$那么$S$是否是柯西序列?令$\varepsilon&gt;0$。是否存在$N&gt;0$使得对于任意$m,n\geq N$,都有$$\left|\sum_{j=n}^{m}\frac{(-1)^{j}}{(2j+1)!}r^{2j+1}\right|\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}&lt;\varepsilon?$$证明1:众所周知,$\sin x$的幂级数展开在任意地方都是收敛的(你可以使用比值审敛法来证明这个结论),然后所有收敛数列都是柯西的,因此$S$是柯西序列。证明2:既然这是研究一个紧致集里的级数,最简单的方法是用下面的不等式:$$\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}(2\pi)^{2j+1}&lt;\varep ...