·

A short introduction to category theory

发布时间:2024-05-03 00:41:25阅读量:280
学术文章
·
笔记
转载请注明来源
写作类别

This short note originated from a short talk of basic category theory in 2022.

Category theory was first introduced by Samuel Eilenberg and Saunders Mac Lane in the 20th century. It rapidly became a strong tool in almost all domains of mathematics. Category theory studies the abstract structures of different mathematical objects, and it also has applications on computer science, including AI.

1. Categories

In this section, we will first lay out the general definition of categories, then we give some concrete and common examples of categories.

Definition 1. A category $\mathcal{C}$ consists of the following data:

  1. A class of objects, denoted by ${\rm{Ob}}(\mathcal{C})$.
  2. To each pair of objects $A, B$, a set ${\rm{Hom}}(A, B)$ of morphisms from $A$ to $B$.
  3. To each triple of objects $A, B, C$, a composition law $${\rm{Hom}}(A,B)\times {\rm{Hom}}(B, C)\longrightarrow {\rm{Hom}}(A, C),\ (f,g)\longmapsto f\circ g.$$

Moreover, it subjects to the following axioms:

(1) Composition is associative, i.e. $(f\circ g)\circ h = f\circ (g\circ h)$ for morphisms $f,g,h$.

(2) For each object $A$, there is a unique identity morphism $1_{A}: A\rightarrow A$ such that $1_{A}\circ f=f\circ 1_{A}$ if the composition makes sense.

Examples 2. (1) The category $\textbf{Sets}$ of sets, whose objects are sets and morphisms are functions.

(2) The category $\textbf{Groups}$ of groups, whose objects are groups and morphisms are homomorphisms.

(3) The category $\textbf{Ab}$ of abelian groups, whose objects are abelian groups and morphisms are homomorphisms.

By Example 2 (3), one can observe that ${\rm{Ob}}(\textbf{Ab})\subset{\rm{Ob}}(\textbf{Groups})$, and for any $x,y\in{\rm{Ob}}(\textbf{Ab})$, ${\rm{Hom}}_{\textbf{Ab}}(x,y)={\rm{Hom}}_{\textbf{Groups}}(x,y)$. This leads to the definition of subcategories.

Definition 3. Let $\mathcal{C}$ be a category. A subcategory of $\mathcal{C}$ is a category $\mathcal{D}$ such that ${\rm{Ob}}(\mathcal{D})\subset{\rm{Ob}}(\mathcal{C})$ and ${\rm{Hom}}_{\textbf{Ab}}(x,y)\subset{\rm{Hom}}_{\textbf{Groups}}(x,y)$ for all $x,y\in{\rm{Ob}}(\mathcal{D})$.

The subcategory $\mathcal{D}$ is said to be full if we have ${\rm{Hom}}_{\mathcal{D}}(x,y)\cong{\rm{Hom}}_{\mathcal{C}}(x,y)$ for all $x,y\in{\rm{Ob}}(\mathcal{D})$.

An invertible morphism in a category is the so-called isomorphism.

Definition 4. Let $\mathcal{C}$ be a category and $f$ is a morphism in $\mathcal{C}$. We say that $f$ is an isomorphism if there is a morphism $g$ in $\mathcal{C}$ such that $f\circ g=1$ and $g\circ f=1$ when the composition makes sense. The morphism $g$ is called the inverse of $f$ and is denoted by $f^{-1}$.

2. Functors

Like objects in the category, we could define transformations between categories. In fact, one could view categories as objects of some bigger category.

Definition 5. Let $\mathcal{C}$ and $\mathcal{D}$ be categories. A functor $F:\mathcal{C}\rightarrow\mathcal{D}$ is an assignment that

  1. To each $x\in{\rm{Ob}}(\mathcal{C})$, it assigns $Fx\in{\rm{Ob}}(\mathcal{D})$.
  2. For all $x,y\in{\rm{Ob}}(\mathcal{C})$ and $f\in{\rm{Hom}}_{\mathcal{C}}(x,y)$, it assigns $F(f)\in{\rm{Hom}}_{\mathcal{D}}(Fx,Fy)$ such that $F(1)=1$ and $F(fg)=F(f)F(g)$ when the composition makes sense.

A contravariant functor is a functor $G:\mathcal{C}^{opp}\rightarrow\mathcal{D}$.

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。

Grothendieck经典著作:代数几何原理EGA 1(1971第二版)法语+英译

在前面几贴中,我已经分别分享了Grothendieck的代数几何三部曲EGA、SGA、FGA,链接如下:代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列(1)代数几何教皇Grothendieck经典著作:代数几何讨论班SGA法语原版全系列代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版但其实EGA 1还有1971年的第二版,Grothendieck在EGA 1第二版中更新了一些内容,因此一些概念定义会与第一版中有出入。原本我也是不太知道EGA竟然还会有第二版,直到后来有次看文献时,发现作者引用了EGA 1(1971)才知道有这一版本。对比EGA 1第一版跟第二版,感觉第二版要比第一版更好读一些,似乎思路行文更清晰,也更好理解。并且值得开心的是,EGA 1第二版有完整英译,现在我全都分享出来。

一个关于定义域光滑不变量的问题

我的提问:定理 22.3(定义域的光滑不变量)令$U \subset\mathbb{R}^n$为一个开子集,$S \subset\mathbb{R}^n$为一个任意子集,并且$f : U \rightarrow S$是一个微分同胚。那么$S$在$\mathbb{R}^n$中是开集。我无法理解为何集合$S$在$\mathbb{R}^n$中并不是自动开的。映射$f$是一个微分同胚,这意味着它在两个方向都是连续的,所以$S$是开的。回答:首先你所知道的是$U$中的开集$V$满足:$f(V)$在$S$中开,不是$f(V)$在$\mathbb{R}^n$中开。所以$f(U)=S$是在$S$中开。那个推断是说接着$f(U)=S$自动在$\mathbb R^n$中开,这是不一样的并且不是自动的。它需要证明。PS:这里说的是拓扑学中关于开集的一个重要盲点,即开集是相对的。尤其是考虑某个拓扑空间中的子集,要弄清楚究竟是在子集内开,还是在全空间内开。

弦圈11月10日上下更新计划:小金库、打赏等功能

这几天忙于写代码完善网站功能,不太有空更新文章和内容。因为弦圈没有借助任何建站工具和博客框架,是我自己前后端一起从零开始写的,因此开发得会比较慢,请谅解。。。目前计划上线功能首先就包括,前面弦圈更新日志:关于智力值和金币提到的小金库。获取金币的机制是:智力值存入银行(叫时空银行time bank?),然后根据日利率每天产生相应的金币。下图为测试画面其次为了让网站能够更好的运作下去,从而给大家提供更好的服务,我计划引入盈利功能。所谓盈利功能即是用户通过弦圈来获得收益的相关功能,包括打赏功能、接广告功能、接悬赏功能。这些功能主要是为了鼓励大家为社区做贡献,并且让需要得到帮助的人更容易获得帮助(毕竟大佬们忙得很,不会轻易帮助你解决问题)。具体规则暂定如下:想要让弦圈的用户能赚钱,那弦圈必须自己先能赚到钱,目前我计划引入弦圈广告和用户交易中心。至于弦圈广告,我打算采用信息流广告、侧边栏广告、文章内嵌广告,拒绝弹窗之类遮蔽视线的广告,因此不会影响用户体验。最后我还得把之前留的坑——创作中心给填上,就是一个给创作者的方便管理内容、查看数据的模块。测试画面如下:尽情期待😇