·

Is fully faithful functor between groupoids injective on objects?

Published at 2024-10-20 22:22:33Viewed 34 times
Academic article
·
Note
Please reprint with source link

My question: Let $\cal{C}$ and $\cal{D}$ be two groupoids, i.e. the category whose morphisms are isomorphisms. Let $F:\cal{C}\rightarrow\cal{D}$ be a fully faithful functor from $\cal{C}$ to $\cal{D}$. Then is $F$ injective on objects? In other words, is the object function $F:{\rm{Ob}}(\cal{C})\rightarrow{\rm{Ob}}(\cal{D})$ injective?

Answer: No. Given any set $X$ we can construct a groupoid called the indiscrete groupoid on $X$, which has a unique (iso)morphism $x \to y$ for $x, y \in X$. Every map of sets $f : X \to Y$ induces a fully faithful functor between the corresponding indiscrete groupoids, whether or not $f$ is injective.

What is true is that a fully faithful functor $F : C \to D$ between categories (not necessarily groupoids) induces an injection on isomorphism classes of objects. To see, this let $i : F(c_1) \cong F(c_2)$ be an isomorphism. Because $F$ is full, $i = F(i')$ for some $i' : c_1 \to c_2$, and similarly $i^{-1} = F(j)$ for some $j : c_2 \to c_1$. We have $F(i' \circ j) = F(i') \circ F(j) = \text{id}_{F(c_2)} = F(\text{id}_{c_2})$ so, since $F$ is faithful, $i' \circ j = \text{id}_{c_2}$, and similarly for the other composite. So $j = (i')^{-1}$ and $i' : c_1 \cong c_2$ is an isomorphism. (In the indiscrete groupoid every object has been made isomorphic.)

Comments

There is no comment, let's add the first one.

弦圈热门内容

Grothendick经典同调代数文章:Some aspects of homological algebra

这是Grothendick著名的关于同调代数的文章Tôhoku paper的英文翻译版,原文是法语版,标题为Sur quelques points d'algèbre homologique。英文翻译为:Some aspects of homological algebra。该文章概述了很多同调代数的重要概念,其中基本都跟代数几何有联系,并且里面不少概念其实是Grothendick本人提出来的,如abelian categories。可以说这篇文章是同调代数的经典文章,在数学圈内也时常有人推荐看这篇文章,毕竟这可是祖师爷亲自从同调代数的基础概念一步步讲起,这对学同调代数或者代数几何的人都有很大裨益。我收藏这篇文章的时候都2021年了,现在拿出来推荐给大家!之后我还会把法语原版也发出来。

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved