代数几何 (数学)
代数几何是数学的一个分支,它利用抽象代数相关的技术来研究几何。代数几何是广泛且深奥的,它能跟几乎所有数学领域产生联系。
代数几何跟范畴论、数论、代数拓扑、微分几何等紧密相关。因此,现代代数几何能被划分成很多个子领域,并因此它有很多方向:算术几何,复代数几何,实代数几何,计算代数几何等等。
相关内容
Note on perfectoid spaces
In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.§1. Adic SpacesDefinition 1.1. A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.§1.1. Morphisms of finite type. The material can be seen in [SP] and [Hu1].First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.We say that $f$ is of finite type if it is quasi-compact and locally of finite type.We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation. Compared with the above definition, we reach to the case of adic spaces.Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.We say that $f$ is of finite type if it is quasi-compact and locally of finite type.We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.§1.2. Unramified, smooth, and étale morphisms.For definitions of morphisms of finite type and finite presentation, see §1.1.First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagramwhere $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.Definition 1.5. Let $R\rightarrow S$ be a ring map.We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.Definition 1.6 ([Hu1, Definition 1.6.5]). A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.§1.3. Berkovich’s analytic spaces.We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].§1.3.1 Underlying topological spaces.First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.Definition 1.7.A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.§1.3.2 The category of analytic spaces.Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:(i) $\mathscr{M}(K)\in\Phi_{K}$.(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.§1.4. Rigid analytic varieties.The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].§1.4.1 $G$-topological spaces. As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists ofa category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, anda set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.§1.4.2 Presheaves and sheaves on $G$-topological spaces. The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.Morphisms of presheaves or sheaves are just natural transformations of functors.Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.Hence, we can define presheaves and sheaves on a $G$-topological space.Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.The following kind of Grothendieck topology is of special interest to us.Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.§1.4.3 Locally $G$-ringed spaces and analytic varieties.The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.§2. Almost mathematicsIn this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].References
[BGR]
S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
[BS]
Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
[Poon]
Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
[SGA4]
M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
[Gab]
O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
[Hodg]
G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
[Falt]
G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
[Tat]
J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
[Tat1]
J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
[Dug]
James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
[Tam]
Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
[Ber]
V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
[Ber1]
V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
[SP]
The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
[Sch]
Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
[Hu]
R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
[Hu1]
R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
[Hu2]
R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.
代数几何简介
1. Introduction代数几何是数学的核心领域,也是如今国际数学界的主流。代数几何与许多数学分支都存在广泛的联系,比如数论、微分几何、代数拓扑、复几何、表示论、同调代数、交换代数、偏微分方程等等,这些分支的发展同时也对代数几何起到促进作用。数学史上的许多重大的事件,比如,费马大定理、莫德尔猜想、韦伊猜想的证明都跟代数几何有关。同时,代数几何存在广泛的应用,比如密码学、弦理论、大数据、统计学习理论等等。代数几何之下有众多分支,比如复代数几何,热带几何,算术几何,远阿贝尔几何,$p$进霍奇理论(complex algebraic geometry, tropical geometry, arithmetic geometry, anabelian geometry, p-adic hodge theory),每个分支代表代数几何研究的一个大方向,而在每个大方向下,又有各种以不同的问题为导向的子方向。在这篇文章中,我们将会对代数几何,包括它的分支算术代数几何,做一个简短的介绍。2. An Introduction to Arithmetic Geometry算术几何是算术代数几何的简称,它是代数几何的一个分支,主要研究与数论有关的问题,比如丢番图方程。著名的费马大定理其实就是丢番图方程的一种。Definition 2.1. Diophantine equations are equations whose solutions are required to be integers.Example 2.2. The equations in Fermat's Last Theorem : $x^{n} + y^{n} = z^{n}$ for all integers $n\geq 2$ are Diophantine equations.Example 2.3. The equations $ax + by = c$ are called linear Diophantine equations.Example 2.4. The equations $x^{2} + y^{2} = z^{2}$ are called Pythagorean equations.从上可以看出椭圆曲线与丢番图方程之间存在某种联系,因此数论上的问题就可以转移到几何上的椭圆曲线进行研究。接下来,我们将给出椭圆曲线的定义,但是在此之前我们先做一些约定。我们记$K$为一个任意的域,$f(x)\in K[x]$ 为$K$上的一个三次多项式,假设这个多项式有不同的根,由于这个域并不一定是代数闭域,因此有些不同的根存在于这个域的代数闭包 $\overline{K}$上。同时,我们假设域$K$不是特征2的。Definition 2.5. The solutions to the equation $y^{2} = f(x)$ , where $x$ and $y$ are in some extension $K'$ of $K$, are called the $K'$-points of the elliptic curve defined by the equation.Example 2.6. The locus of the equations $y^{2} = x^{3} - n^{2}x$ is a special case of elliptic curve.Figure 1. Elliptic curves从上面的定义和这个例子,我们可以看出椭圆曲线的方程形式上像一个丢番图方程。事实上,当我们限定椭圆曲线方程的解为整数解时,方程就成为了丢番图方程。既然说到了椭圆曲线,我们不得不提及一下跟椭圆曲线有关联的椭圆函数。椭圆函数是19 世纪数学最光辉的成就之一,它当初是由求椭圆弧长诱导出来的,与椭圆积分也有很密切的联系,毕竟椭圆积分就是用来求椭圆弧长的。顺带一提,椭圆周长目前没有办法求精确值,其周长表达式没法表达成初等函数的形式,它只有椭圆积分表达式以及级数展开式。在定义椭圆函数之前,我们需要先定义复数域$\mathbb{C}$上的lattice。Definition 2.7. A lattice $L$ in the complex plane is the set of all integral linear combinations of two given complex numbers $\omega_{1}$ and $\omega_{2}$, where $\omega_{1}$ and $\omega_{2}$ are linear independent.Example 2.8. If we take $\omega_{1}$ = 1 and $\omega_{2}$ = $i$, we will get a lattice of Gaussian integers $\{mi+n| m , n\in \mathbb{Z}\}$.Definition 2.9. A meromorphic function on $\mathbb{C}$ is said to be an elliptic function relative to a given lattice $L$, if $f(z+l)=f(z)$ for all $l\in L$.从定义可以看出,椭圆函数是一个双周期的函数。这使人联想到实数情况的单周期函数。一个$\mathbb{R}$上的周期函数,可以看成一个圆上的函数,而一个$L$的椭圆函数则可以看成一个圆环上的函数。我们可以证得关于一个lattice 的所有椭圆函数的集合构成一个域$\mathcal{E}_{L}$,它是所有亚纯函数的域的子域,因为任意两个椭圆函数的和差积商都是椭圆函数。接下来,我们继续讨论椭圆曲线。椭圆曲线与模形式有紧密的关联,而它们之间的联系成为了证明费马大定理的关键。由于作者并不能完全看懂费马大定理的证明,因此这里不做过多阐述。我们知道当年最后完成费马大定理证明的数学家是Wiles,而Wiles在他的paper 中证明了所有有理数集上的半稳定的椭圆曲线都是modular的,从而使费马大定理成为一个推论被证明。值得一提的是,Wiles在十岁的时候在一本叫做《最后定理》的书中了解到了费马大定理,他很受震撼并打算成为第一个解决费马大定理的人,最后正如他自己所说,很多数学家用自己的一生尝试解决费马大定理都没有成功,最后只有他成功了。关于椭圆曲线、椭圆函数、模形式、费马大定理的证明,想了解更多的读者可以参考[1], [11]。讲完费马大定理,接下来我们来讲讲费马大定理背后的故事,即费马大定理之所以最后能够被Wiles证明,主要是归功于某些数学家的关键性工作。其中两位即是日本数学家Shimura 和Taniyama,他们提出的谷山—志村猜想成为了证明费马大定理的关键一步。还有一位数学大师,在讲他之前我们需要先做一些铺垫。上个世纪,算术几何中不仅仅只有费马大定理,还有韦伊猜想(有限域上的黎曼猜想)、莫德尔猜想。韦伊猜想被Deligne所证明,而莫德尔猜想被Faltings所证明。Deligne和Faltings都是如今数学界的泰斗级人物,不论是Wiles、Deligne还是Faltings ,他们的证明都离不开一个人的奠基性工作,他就是被很多人认为是20世纪最伟大的数学家Grothendieck。Grothendieck被称作代数几何的教皇,有一句很经典的描述他的话就是:“20世纪代数几何涌现了很多天才和菲尔兹奖,但是上帝只有Grothendieck一个。”Grothendieck的工作使代数几何这门古老的学科重新焕发出新的生命力,这也使代数几何进入如今的黄金时期。Grothendieck的哲学直接被数学所吸收,以至于现在数学的新人根本无法想象Grothendieck时代前这个领域的模样。从二十世纪中叶开始,整个代数几何领域越来越抽象和普遍的研究倾向,大部分都得归功于Grothendieck的影响。Grothendieck 的影响之大,几乎所有数学分支都能感受到。如今的代数几何已经是后Grothendieck时代了,代数几何涌现出了很多后起之秀,比如说日本数学家Shinichi Mochizuki、德国数学家Peter Scholze。接下来,我们继续介绍算术几何的有关内容。上文中我们提到了可以通过研究椭圆曲线和模形式,进而研究数论问题。而椭圆曲线其实只是代数曲线中的一种特殊情况,代数曲线是算术几何的一个重要研究课题。别看名字很高大上,它其实很常见,比如说在欧几里得平面上的代数曲线,就是我们用多项式方程$f(x,y) = 0$所定义的平面曲线。而想要定义一般的代数曲线就不那么简单了,这需要用到Grothendieck发展的概形的理论。在定义一般的曲线之前,我们需要不少的预备知识,因此在这里我们只做简单的描述,想要了解更多细节的读者可以参考[2]。首先,在定义概形之前,我们需要定义层的概念。我们有阿贝尔群层、环层、模层等等,取决于层所取的范畴。关于范畴论的概念不熟悉的读者可以参考[7]。Definition 2.10 ([2], [16]). Let $X$ be a topological space. A presheaf $\mathcal{F}$ of abelian group on $X$ is a contravariant functor $$ \mathcal{F}:\textbf{Top}^{\textrm{opp}}\rightarrow \textbf{Ab}$$ from the category of open sets of $X$ to the category of abelian groups.If $\mathcal{F}$ is a presheaf on $X$, the set $\mathcal{F}(U)$ consists of the sections of $\mathcal{F}$ over the open set $U$. If $s\in \mathcal{F}(U)$, we write $s|_{V}$ for an element of $\mathcal{F}(V)$ corresponding to $s$.Definition 2.11. A presheaf $\mathcal{F}$ on a topological space $X$ is a sheaf, if it satisfies the following conditions:(Uniqueness) if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$, then for an element $s\in \mathcal{F}(U)$ such that $s|_{V_{i}}$ = 0 for all $i$, we have $s = 0$.if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$. If we have elements $s_{i}\in \mathcal{F}(V_{i})$ for each $i$, such that for each $i, j$, $s_{i}|_{V_{i} \cap V_{j}} = s_{j}|_{V_{i}\cap V_{j}}$, then there is an element $s \in \mathcal{F}(U)$ such that $s|_{V_{i}} = s_{i}$ for each $i$.Definition 2.12. Let $\mathcal{F}$ be a presheaf on $X$, if $P$ is a point of $X$, we define the stalk $\mathcal{F}_{P}$ of $\mathcal{F}$ at $P$ to be direct limit of the groups $\mathcal{F}(U)$ $$\lim\limits_{\longrightarrow}\mathcal{F}(U)$$ for all open sets $U$ containing $P$.一个预层上某个点的茎$\mathcal{F}_{P}$,其实就是一个等价类的集合,我们可以记茎中任意一个元素为$\langle U,s\rangle$,并称它为$\mathcal{F}$截面的芽。其中$U$为$P$ 点的开邻域,$s\in\mathcal{F}(U)$。接下来,我们记$A$为一个环,$Spec(A)$为该环所有素理想的集合,称为谱。如果$\alpha$是环$A$的任意一个理想,我们记$V(\alpha)\subseteq Spec(A)$为所有包含理想$\alpha$ 的素理想的集合。我们令$V(\alpha)$为$Spec(A)$中的闭集,从而在$Spec(A)$上定义了一个Zariski拓扑。接着,我们再定义拓扑空间$Spec(A)$上的环层$\mathcal{O}$。 这样下来,$(Spec(A),\mathcal{O})$成为一个局部赋环空间。接下来我们给出赋环空间的定义。回顾一下,一个环$A$被称为局部环,如果它只有唯一一个极大理想$\mathfrak{m}_{A}$。Definition 2.13. A ringed space is a pair $(X,\mathcal{O}_{X})$, where $X$ is a topological space and $\mathcal{O}_{X}$ is a sheaf of rings on $X$ called the structure sheaf. A ringed space is a locally ringed space, if for each $P\in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.有了上面这些储备,我们终于可以定义概形。首先我们定义仿射概形,之后就是一般的概形。Definition 2.14. An affine scheme is a locally ringed space $(X,\mathcal{O}_{X})$, which is isomorphic to a spectrum $\textrm{Spec }A$ of some ring $A$. A scheme is a locally ringed space $(X,\mathcal{O}_{X})$ in which every point $p$ of $X$ has an open neighborhood $U$ such that $(U,\mathcal{O}_{X}|_{U})$ is an affine scheme.从以上的定义,我们可以看出概形跟流形有异曲同工之妙。对于一个流形来说,它局部上都是一个欧几里得空间。而对于一个概形来说,它局部上都是一个仿射概形,同时因为同构关系,概形局部上的仿射概形可以看成某个环的谱。这样下来,流形由一个个欧几里得空间拼起来,而概形由一个个环的谱拼起来。而事实上,微分几何里的流形是可以用局部赋环空间表示的(更多细节请参考[10], [15])。现在我们有了概形,就可以定义一般意义上的代数曲线了。在此之前,我们先定义概形的一些基本性质。Definition 2.15. Let $X$ be a scheme. We say that $X$ is integral if for each open affine set $U\subset X$, $\mathcal{O}_{X}(U)$ is an integral domain.Definition 2.16. Let $f:X\rightarrow Y$ be a morphism of schemes. The diagonal morphism of $X$ is a morphism $\triangle:X\rightarrow X\times_{Y}X$ such that $\textrm{pr}_{1}\circ\triangle=\textrm{pr}_{2}\circ\triangle=\textrm{id}_{X}$. We say that $f$ is separated or that $X$ is separated over $Y$ if the diagonal morphism of $X$ is a closed immersion.Definition 2.17. Let $f:X\rightarrow Y$ be a morphism of schemes. We say that $f$ is proper or that $X$ is proper over $Y$ if $f$ is separated, of finite type, and universally closed.Definition 2.18. Let $X$ be a scheme. The dimension of $X$ is the dimension of its underlying topological space $\textrm{sp}(X)$, which we will denote by $\textrm{dim }X$.Definition 2.19. An algebraic curve is an integral scheme of dimension 1, proper over a field $K$, all of whose local rings are regular.因此,一个代数曲线其实就是一个一维的概形。流形也如此,一维的流形也叫做曲线。以上我们完成了对代数曲线的定义,通过代数曲线我们可以研究数论问题。但是,研究代数曲线是需要工具的。在这些工具中,就有algebraic stack和moduli theory。Algebraic stack是stack的特殊情况,stack是对概形的进一步推广。而stack可以看成某种群胚纤维化范畴(category fibred in groupoid),可以运用Descent à la Grothendieck来定义。而moduli theory就是研究某一类数学对象的参数空间,比如曲线的模空间、椭圆曲线的模空间。由于目前这些理论不是作者的研究方向,作者不作过多阐述。2.1 The $p$-adic numbers field $\mathbb{Q}_{p}$ and the $p$-adic integers ring $\mathbb{Z}_{p}$接下来,我们来简单说明一下$p$进数域$\mathbb{Q}_{p}$是如何构造出来的。首先,我们以有理数域$\mathbb{Q}$为例,粗略解释一下完备化(completion)的过程:我们取有理数域所有柯西序列构成的集合,定义逐项加法和乘法后可以证明它构成一个交换环,接着模掉所有零序列构成的理想,我们就得到一个完备的域,它是有理数域的域扩张。一个域的完备化不是唯一的,对应不同定义于域上的绝对值,我们可以定义不同的柯西序列,进而构造出不同的完备化。在这里,我们给出任意域上的绝对值与完备域的定义。Definition 2.20. Let $K$ be a field. An absolute value on $K$ is a map $\left|\cdot\right|:K\rightarrow\mathbb{R}_{\geq0}$ such that $\left|x\right|=0\Leftrightarrow x=0$, $\left|xy\right|=\left|x\right|\left|y\right|$, and $\left|x+y\right|\leq\left|x\right|+\left|y\right|$. We say that $K$ is complete if it is complete with respect to the distance $d(x,y)=\left|x-y\right|$ induced by the absolute value $\left|\cdot\right|$ on it.接下来我们先定义有理数域上的$p$进序数。Definition 2.21. Let $p$ be any prime number. We define the $p$-adic ordinal ord$_{p}a$ of an non-zero integer $a$ to be the highest power of $p$ which divides $a$, i.e. the greatest $m$ such that $p^{m}|a$ or $a\equiv0(\textrm{mod }p^{m})$.我们约定当整数$a=0$时,ord$_{p}a=\infty$。接着对于任意$x=a/b\in\mathbb{Q}$,我们定义$\textrm{ord}_{p}x=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。如果将ord看成一个函数,那么它是良定义的,因为如果将$x$写成$x=ac/bc$,我们有$\textrm{ord}_{p}x=\textrm{ord}_{p}ac-\textrm{ord}_{p}bc=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。接着我们定义$p$进绝对值:$$\left| x \right|_{p} = \begin{cases} \frac{1}{p^{\textrm{ord}_{p}x}}, & \textrm{if} \ x\neq 0\\ 0, & \textrm{if} \ x = 0. \end{cases}$$我们先阐述复数域$\mathbb{C}$的构造过程,首先我们作有理数域$\mathbb{Q}$的完备化(关于通常的绝对值$\left|\cdot\right|$)$\widehat{\mathbb{Q}}$得到实数域$\mathbb{R}$,然后取实数域的代数闭包$\overline{\mathbb{R}}$ 得到复数域。$p$进数域$\mathbb{Q}_{p}$其实就是有理数域$\mathbb{Q}$的$p$进完备化(关于$p$进绝对值 $\left|\cdot\right|_{p}$)$\widehat{\mathbb{Q}}$。然而当我们取$p$进数域的代数闭包$\overline{\mathbb{Q}}_{p}$时,发现它不是完备的,因此我们对其再作一次完备化,最后得到$\mathbb{C}_{p}$。它是最小的包含有理数域的既是代数闭的,又是完备的域。于是,我们有如下关系:$$\begin{cases} \mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}=\widehat{\overline{\widehat{\mathbb{Q}}}}, \textrm{p-adic analog} \\ \mathbb{C}=\overline{\mathbb{R}}=\overline{\widehat{\mathbb{Q}}}, \textrm{usual case} \end{cases}$$接着$p$进整数环$\mathbb{Z}_{p}$即是$p$进数域$\mathbb{Q}_{p}$的离散赋值环:$$\mathbb{Z}_{p}:=\{x\in\mathbb{Q}_{p}\mid \left|x\right|_{p}\leq1\}.$$3. Grothendieck's Theory接下来,我们来回顾一下上世纪Grothendieck所做的工作。其实代数几何如今整体上能分成两个方向,一个是以Grothendieck发展的抽象理论为基础的方向,另一个是与微分几何结合主要研究复几何的方向(参考[14])。Grothendieck所做的工作当然远远不止上文所说的概形,还有étale cohomology(平展上同调), crystalline cohomology(晶体上同调), $l$-adic cohomology($l$进上同调), topos(拓扑范), motives, Grothendieck topology, Grothendieck universe等等。除此之外,Grothendieck 还有三本被誉为代数几何圣经的著作,分别是EGA(Éléments de géométrie algébrique),SGA(Séminaire de géométrie algébrique)和FGA(Fondements de la Géometrie Algébrique),翻译成中文就是《代数几何原理》、《代数几何讨论班》和《代数几何基础》。首先我们来说说Grothendieck著名的motives理论,该理论的哲学即是将所有的性质相似的上同调,诸如奇异上同调、德拉姆上同调、平展上同调和晶体上同调,统一起来。下面我们给出上同调的定义,该定义涉及到阿贝尔范畴。所谓的阿贝尔范畴,它的原型是阿贝尔群范畴,上世纪Grothendieck将其重要的性质抽象出来,只剩下足够计算同调代数的东西。Definition 3.1. A cochain complex $\mathcal{C}= \{\mathcal{C}^{n},d^{n}\}$ in an abelian category $\mathfrak{U}$ is a collection of objects $C^{i},i\in \mathbb{Z}$ , and morphisms $d^{i} : C^{i} \rightarrow C^{i+1}$, such that $d^{i}\circ d^{i+1} = 0$. The morphisms $d=\{d^{i}\}$ are called the differential (or coboundary operator).The $i$th cohomology object of the complex $\mathcal{C}$ is defined to be $H^{i}(\mathcal{C}) = \textrm{Ker }d^{i}/\textrm{Im }d^{i-1}$.根据范畴的不同,我们可以定义上同调群、上同调模,接着就可以定义singular cohomology(奇异上同调)、de Rham cohomology(德拉姆上同调)、Galois cohomology(伽罗华上同调)、Čech cohomology (切赫上同调)等等。在集合论中,我们有类与集合的概念。所谓的类由所有享有共同性质的数学对象构成,但是它不一定是一个集合,如果它不是一个集合,我们称这个类是真类。接下来,我们给出Grothendieck universe 的定义,它是在上世纪由Grothendieck提出来的,用来避免不构成集合的真类。如果读者想要了解更多相关内容,可以参考[5], [6]。Definition 3.2. A Grothendieck universe is a non-empty set $\mathcal{U}$ that satisfied the following conditions:if $x\in \mathcal{U}$ and $y\in x$, then $y\in \mathcal{U}$.if $x,y\in \mathcal{U}$, then $\{ x,y\}\in \mathcal{U}$.if $x \in \mathcal{U}$, then $\mathcal{P}(x) \in \mathcal{U}$, where $\mathcal{P}(x)$ denotes the set of all subsets of $x$.if $(x_{i},i\in I)$ is a family of elements of $\mathcal{U}$ and $I \in \mathcal{U}$, then $\bigcup_{i\in I}x_{i} \in \mathcal{U}$.4. Modern Mathematics以上内容其实都已经是以前发展的理论了,基本上都是20世纪的内容,已经有点旧了。接下来,我们讲一下21世纪比较新的内容:Shinichi Mochizuki和Peter Scholze的工作。Shinichi Mochizuki(望月新一)就是那位声称证明了abc猜想的数学家,我们习惯叫他为望月大神。他刚开始主要是做hyperbolic curve相关的研究的,后来他开始通过运用自己以前的研究成果来研究远阿贝尔几何(anabelian geometry)。远阿贝尔几何最初是Grothendieck提出来的一个宏伟的理论,如今它被望月新一进一步发展,构建了一个名叫宇宙际理论(Inter-universal Teichmüller Theory)的东西,用于证明abc猜想,可惜世界上没有多少数学家能够看得懂他的证明,因此关于他的证明主流数学界仍不认可。不同的是,Peter Scholze的工作则更为主流数学界所接受,很多人都更愿意做Peter Scholze的方向。Peter Scholze就是那个国际奥林匹克数学竞赛拿金牌,高中开始学习研究生数学的数学家,很年轻。在他的博士论文中,他发展出了一个叫状似完备空间(perfectoid spaces)的新东西,成为了当代算术几何最具影响力的数学家之一。4.1. Rigid GeometryPeter Scholze 所做的perfectoid spaces与刚性几何(Rigid Geometry)有关,接下来我们将对刚性几何的部分内容做介绍。想要了解更多的读者请参考[3], [4]。首先我们需要研究非阿基米德的绝对值。对于与绝对值相关的valuation,在本文中我们将不予讨论。我们着重讨论非阿基米德的绝对值的特别之处。Definition 4.1. A (non-archimedean) absolute value $\upsilon$ on a field $K$ is a map $\left| \cdot \right|$ : K $\rightarrow$ $\mathbb{R}_{\geq0}$, such that for all $x,y\in K$ the following conditions verified:$\left| x \right|$ = 0 $\Leftrightarrow$ $x=0$.$\left| xy \right|$ = $\left| x \right|$$\left| y \right|$$\left| x+y \right| \leq \max\{\left| x \right|, \left| y \right|\}$Proposition 4.2. Let $x,y\in K$, we have $\left| x+y \right|$ = $\max\{\left| x \right|, \left| y \right|\}$, if $\left| x \right| \neq \left| y \right|$.Proof. Without loss of generality, we assume $\left| x \right| < \left| y \right|$. Then $\left| x+y \right|$ $<$ $\max\{\left| x \right|, \left| y \right|\}$ =$ \left| y \right|$ implies$$\ \left| y \right| = \left| (y+x)-x \right| \leq \max\{\left| x+y \right|, \left| x \right|\} < \left| y \right|$$which is contradictory. So we must have $\left| y \right| = \left| y+x \right| = \max\{\left| x \right|, \left| y \right|\}$ as claimed.通过绝对值,我们定义任意域$K$上的距离为$d(x,y) = \left| x-y \right|$,然后该距离诱导出$K$上的一个拓扑。有了$K$中任意两点的距离,根据非阿基米德的三角不等式,对于所有$x,y,z \in K$,我们可以得出:$$d(y,z) \leq \max\{d(x,y),d(x,z)\}$$根据命题4.2,该不等式两边相等,如果不等式右边的两个距离不相等。这意味着:在域$K$中的任意三角形,都是等腰三角形。更进一步,我们可以证出:域$K$中任意一个圆盘中的点都可以作为该圆盘的中心。因此,如果$K$中的两个圆盘有非空交集,那么它们就是共心的。下面我们给出证明。Definition 4.3. For a centre $a\in K$ and a radius $r\in \mathbb{R}_{> 0}$, we define the disk without boundary to be the set $$D^{-}(a,r) = \{ x \in K\mid d(x,a)<r \}$$ And we define the disk with boundary to be the set $$D^{+}(a,r) = \{ x \in K\mid d(x,a)\leq r\}$$Proposition 4.4. Each point of disk without boundary in K is the centre of the disk.Proof. Assume that $a$ is the centre of a disk, $b$ is a point different from $a$. For any $x\in D^{-}(a,r)$, we have $$ d(x,b) = \left| x-b \right| = \left| (x-a)+(a-b) \right| \leq \max\{\left| x-a \right|,\left| a-b \right|\} < r $$类似的,我们可以证明对于有边界的圆盘,其中的任意一点都可以是它的中心。4.2 Perfectoid Geometry接下来我们粗略地说一下,Perfectoid spaces, [4],这篇文章里面的一些内容,鉴于作者水平有限,不能一一详述。首先,perfectoid是perfect+oid,意思就是more or less perfect,类完美。首先,我们回顾一下什么是完美域(perfect fields)。Definition 4.5. Let $K$ be a field. We say that $K$ is perfect if either $K$ has characteristic $0$, or if $K$ has characteristic $p>0$, the Frobenius $$ \Phi:K\rightarrow K, x\mapsto x^{p}$$ is an isomorphism.Perfectoid spaces这篇文章的动机源于以下Fontaine-Wintenberger的一个定理:Theorem 4.6. The absolute Galois groups of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and $\mathbb{F}_{p}((t))$ are canonically isomorphic.Remark 4.7. $$\mathbb{Q}_{p}(p^{1/p^{\infty}})=\lim_{\substack{\longrightarrow \\ n>0}}\mathbb{Q}_{p}(p^{1/p^{n}})=\bigcup_{n>0}\mathbb{Q}_{p}(p^{1/p^{n}}).$$$\mathbb{Q}_{p}(p^{1/p^{\infty}})$是一个特征0的域,它的剩余类域$\mathbb{F}_{p}$是特征$p$,这种域被称为混合特征的(mixed characteristic)。而$\mathbb{F}_{p}((t))$ 是一个特征$p$的域。意思是如果将所有$X^{p^{n}}-p\in\mathbb{Q}_{p}[X]$的根加到$\mathbb{Q}_{p}$里面,它会看起来像一个特征$p$的域$\mathbb{F}_{p}((t))$。想要更好地理解$\mathbb{Q}_{p}(p^{1/p^{n}})$是什么意思,可以参考$\mathbb{C}\cong\mathbb{R}(i)\cong\mathbb{R}[X]/(X^{2}+1)$这个例子。同时,我们有这样一个tower:$$\mathbb{Q}_{p}\subseteq \mathbb{Q}_{p}(p^{1/p})\subseteq \mathbb{Q}_{p}(p^{1/p^{2}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{n}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{\infty}}).$$定理4.6可以在更加一般的框架下研究,这就引申出了perfectoid fields。 首先,我们给出非阿基米德域的定义,它其实就是一个拓扑由一个非阿基米德绝对值生成的拓扑域。Definition 4.8. A non-archimedean field is a topological field $K$ whose topology is induced by a non-trivial valuation of rank 1.Definition 4.9. A perfectoid field is a complete non-archimedean field $K$ with residue characteristic $p>0$ whose associated rank-1-valuation is non-discrete and the Frobenius $\Phi:K^{\circ}/p\rightarrow K^{\circ}/p,x\mapsto x^{p}$ is surjective.Example 4.10. The $p$-adic completion $\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}$ of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and the $t$-adic completion $\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}:=\mathbb{F}_{p}((t))((t^{1/p^{\infty}}))$ of $\mathbb{F}_{p}((t))(t^{1/p^{\infty}})$ are perfectoid fields.$$\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}=\widehat{\mathbb{Z}_{p}[p^{1/p^{\infty}}]}[\frac{1}{p}]=(\lim_{\longleftarrow} \mathbb{Z}_{p}[p^{1/p^{\infty}}]/p^{n})[\frac{1}{p}],$$$$\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}=\widehat{\mathbb{F}_{p}[t^{1/p^{\infty}}]}[\frac{1}{t}]=(\lim_{\longleftarrow} \mathbb{F}_{p}[t^{1/p^{\infty}}]/t^{n})[\frac{1}{t}].$$Perfectoid field叫做类完美域,当它为特征$p$时,它是一个完美域。同时,这里有一个tilt的过程,它可以看成一个函子叫做tilt funtor:$$K\mapsto K^{\flat}$$将一个任意特征的perfectoid field打到一个特征$p$的perfectoid field。同时,我们有$$K^{\flat}=\lim_{\substack{\longleftarrow \\ x\mapsto x^{p}}}K.$$接着我们有了更加一般的定理,它推广了定理4.6。Theorem 4.11. The absolute Galois groups of $K$ and $K^{\flat}$ are canonically isomorphic.总之,这篇文章中,Peter Scholze提出一种框架,它能将任意特征的问题简化为特征$p$的问题,因为特征$p$往往更好研究,同时也有很多好的性质和结论。References
Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag New York, Inc., 1993.
Robin Hartshorne, Algebraic Geometry, Springer, New York, NY, Springer Science+Business Media New York, 1977.
Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), pp. 245–313.
Grothendieck with Artin, M. and Verdier, J. L. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Springer-Verlag Berlin Heidelberg, 1973.
Pierre Deligne, Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Springer-Verlag Berlin Heidelberg, 1977.
Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Springer-Verlag New York, 1997.
Fredrik Meyer, Notes on algebraic stacks, https://blog.fredrikmeyer.net/uio-math, 2013.
G. Everest and Thomas Ward, An Introduction to Number Theory, Springer-Verlag London, 2005.
Loring W. Tu, An Introduction to Manifolds, 2nd ed., Springer, New York, NY, 2011.
Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-552.
Michael Artin, Allyn Jackson, David Mumford, and John Tate, Coordinating Editors, Alexandre Grothendieck, Notices of the AMS 51, 2016.
Joe Harris and Ian Morrison, Moduli of Curves, Springer-Verlag New York, Springer Science+Business Media New York, 1998.
Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley-Interscience; 1st edition (August 16, 1994), 1978.
J.S. Milne, Algebraic Geometry (v6.02), www.jmilne.org/math/ , 2017.
Glen E. Bredon, Sheaf Theory, Springer-Verlag New York, Springer Science+Business Media New York, 1997.
学数学感到痛苦是正常的,天才学数学同样感到痛苦
以下短文为我2022年3月3日朋友圈的感想,如今分享出来lyh说得有理!就比如我一周十几节课,天天早八,结果就是我虽然很累,但是脑子根本就没转几下。本科的课堂对我而言根本没有什么思维强度,以至于上课我总是打瞌睡😢。以前我可能会很不喜欢某些课,但现在我的心态就是能学多点也不亏,随缘。做研究是一件其具挑战性的事情,你得站在无法预知的交叉路口,凭借自己的眼光、胆识,去艰难开辟一条属于自己的道路。这完全不是学习强度能够简单衡量的。我觉得只有我读文献的时候,才感到自己脑袋真的动起来了。为了深刻理解文献的内容,我需要做一个又一个的计算,我不知道其它分支是不是也是这样的,但似乎学本科的数学,读定义根本不需要做什么计算。同时,每接触一个全新的东西,你都得熟悉它的background,了解它的motivation,然后找一些例子,做一些计算等等,这些过程往往会耗费大量的时间和精力,最重要的是会产生巨大的压力。读文献,你每天都会接触很多全新的概念,新到你学之前完全无法想象得到它的存在。因此,我个人觉得学数学感到痛苦是一件很正常的事情,我相信每个学数学的人无论水平如何都会感到痛苦,尤其是读证明的时候。😣看了lyh的话,我似乎也开始明白为什么自己学数学、做研究的方法这么难传授给那些同样想学数学的人。因为这些东西本身就没有固定的流程,并不是标准化的流水线工程。很多时候,有的东西就是一种感觉,我只不过是努力将自己的感觉通过语言表达出来,希望别人能够理解。最后我想拿Peter Scholze说过的话来共勉:在一个采访中,问Scholze觉得看数学痛苦吗?有没有办法让数学论文更加简单更容易理解?Scholze说痛苦,但是他觉得这些痛苦是有价值的,虽然他不知道别的数学领域,但是他自己这块这些痛苦是必须的。
把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革
据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分,也就是不符合交换律ab=ba的部分,会如何影响相应代数结构的性质。看不懂这句话是正常的。要解释这个领域研究的是什么,可能需要整整一篇文章(可以参看http://songshuhui.net/archives/96606),还不一定能解释清楚。而且那篇文章还得找一个远阿贝尔几何的专家,不是像我这样搞组合数学的人。是的,对于望月新一的体系,我其实也只算理解基础,是数学界内部的吃瓜群众。但面对这个体系,很多数学家的境况并不比我好得多。包括菲尔兹奖得主陶哲轩,包括望月新一的恩师法尔廷斯,他们都抱怨望月新一的证明太简略太难懂。现在,懂得整个证明的,除了望月新一之外,据说只有十几个人,大部分在日本,其他在美国和法国。但是,如果他是对的,那就意味着代数几何的重大革新。一个人能够改变一个学科吗?一个新的证明或者理论体系,给数学界带来重大影响,这并不是第一次。大卫·希尔伯特也许是最重要的现代数学家之一,光是他在1900年提出的那23个数学问题就差不多贯穿了整个世纪。他的成名之作,那篇“终结了不变量理论”的论文,在当时就引起了巨大的争议。此前,不变量理论的大多数进展都基于具体的计算,需要给出具体的结果。这样的证明又叫构造性证明。但希尔伯特的证明不属此列,而分属“存在性证明”,能断言某个数学对象的确存在,但对于如何计算却绝口不提。他一开始投稿恰好碰上了当时的“不变量之王”哥尔丹。哥尔丹对这样的证明颇有微词,他的退稿评价是:这不是数学,这是神学。但最终希尔伯特幸得克莱因的保荐(“这无疑是这本杂志发表过有关一般代数的最重要的工作”),论文得以发表。正因为无需具体给出构造,存在性证明要比构造性证明要更为简洁有力,也因此逐渐被广泛接受。即使是一开始拒稿的哥尔丹,最后也承认了希尔伯特的工作,“即使是神学也有其价值”。希尔伯特之后也因为公理化的工作以及其他数学成就,跻身当时数学界的顶尖。另一位为数学界作出巨大贡献的德国数学家康托尔,他的命运却大不相同。在研究傅里叶分析时,康托尔领会到无穷之后仍有无穷的无穷。他从最基础的集合论开始,建立了一个全新体系,描述了超越无穷的无穷,也就是超穷[songshuhui.net/archives/90745]。集合论中的很多基础结果,就出自他的手笔。但他的研究甫一发表,就遭到许多顶尖数学家的攻讦。庞加莱说他的想法就像“严重的疾病”,正在感染数学这一学科。当时执德国数学界牛耳的克罗内克,公开反对康托尔关于超穷的理论,甚至到达了人身攻击的地步。他称康托尔为“科学骗子”、“背叛者”、“腐蚀了青年”,近乎偏执地指责着康托尔和他的理论。但数学毕竟是数学。经过曲折发展之后,集合论成为了现代数学的基础,成了数学系学生的必修课。正是希尔伯特作出了这样的断言:身处康托尔跟我们一道展开的天堂内,我们屏息于惊叹之中,知道无人能将我们由此驱逐。可惜,康托尔本人的命运却远没有那么光明。也许是因为得不到理解,也许是因为这些无休止的攻击,康托尔患上了抑郁症,一直没有痊愈。他的晚年恰逢第一次世界大战,贫困加剧了战争带来的饥谨。心脏病给他的最后一击,也许是种解脱。有好几个人把望月新一比作上一代的数学家格罗滕迪克。格罗滕迪克的遭遇处于康托尔和希尔伯特之间。他的数学风格高度抽象,但却能得出实际的结果。引用我之前写的:他谈论的数学实在过于抽象,难以理解。但这就是格罗滕迪克做数学的风格:尽可能从数学对象中将不必要的细节抽象出来,抽象得一般的数学家都会以为剩下的只有“虚空”,然而他仍然能从“虚空”中抓住某些东西,从而建立他的理论,完成他的证明。用格罗滕迪克本人的说法,如果把数学问题比作坚果,大部分数学家做的就是用锤子和凿子把坚果凿开,而他的做法则是将坚果浸在水里,慢慢软化它的外壳,又或者让它经受风吹日晒,然后等待合适的时机,坚果自然就会裂开。对于大部分数学家来说,这个过程太漫长,也许只有拥有深刻洞察力的格罗滕迪克,才能在能接受的时间内,用这种方法解决问题。这也是他的数学难以被理解的原因之一:他几乎不考虑具体的示例,都是从尽可能抽象的角度出发,思考支配某个数学问题背后的宏大数学结构。有时候这也会闹出笑话。有一次讨论数学的时候,有人向格罗滕迪克提议考虑一个特定的质数作为例子。“你的意思是找一个真实的数字?”格罗滕迪克有点疑惑。对方点了点头。他回答:“好吧,我们考虑57这个质数。”57当然不是质数,但格罗滕迪克大概没有注意这一点,他从来不考虑具体的例子,一切从抽象出发。格罗滕迪克的这种风格,让他年纪轻轻就全套改写了代数几何所用的数学语言,给这个领域带来了全新的抽象思维方式,让代数几何成为数学中可能是最抽象最深奥但也最有力量的分支。他编写的EGA和SGA是代数几何的入门宝典,他的定理和想法,尤其是标准猜想,仍然留在众多代数几何学者的心头。当然,新理论新证明被彻底摧毁的例子也比比皆是。在2004年,美国数学家路易·德·布朗奇(Louis de Branges)在自己的个人页面上贴出了一篇124页的论文,声称利用自己发展的基于希尔伯特空间的一套体系,证明了数论中最引人注目的黎曼猜想,跟望月新一的情况相当相似。因为德·布朗奇此前曾证明另一个著名猜想——比伯巴赫猜想(Bieberbach conjecture),所以也有人关注他的证明。但直至现在,论文经过多次修改,似乎仍然站不住脚。目前数学界普遍认为他并未能证明黎曼猜想。不停有人提出新的想法,即使一开始不被接受,历经时间洗练,终将得到应有的评价,而数学也就此进步。虽然提出新想法的人,他们各自有需要承受的命运,不以他们的贡献为转移。这就是数学史。而望月新一的理论,就是在当下展开的历史。他的理论是对是错,只能拭目以待。抽象的极致望月新一给他的体系起名为“宇宙際Teichmüller理論”(inter-universal Teichmüller theory),简称IUTT,有时候也省略对应“理论”的T,写成IUT。他并没有特意发明这个略显中二气息的名字,这锅要由他的先驱格罗滕迪克(Grothendieck)来背,是他发明了Grothendieck universe这个数学对象。而universe这个术语可能还要追溯到更久远的集合论先驱,因为它对应着集合论中“所有集合组成的一堆东西”这个概念。是的,所有集合不构成一个集合,只能说成“一堆东西”,或者用“类”这个术语。幸好,中文对universe的标准翻译“全类”没有那么中二。用上这个翻译的话,中文可以写成“跨全类Teichmüller理论”。但为了原汁原味起见,我们后面还是用“宇宙”这个术语。因为,另一个universe的数学,总有些不一样。有多不一样呢?这里实在没有办法深入探讨望月的IUT理论,不过正好有一个合适的例子,是望月新一在此之前研究的一个最最基础的数学结构:p进整数。它并不在另一个universe,但你阅读它的感受,大概和数学家读IUT的感受类似吧。p进整数是什么?对于数学家来说最快捷易懂的定义,就是:对于素数p,$(\mathbb{Z}/p^n\mathbb{Z})_{n>0}$的投影极限(懵了吗?我第一次看到这个定义时,一下子就读懂了——但是我读望月的论文,大概就是你现在的感受。)p进整数有这样的一些特征(以p=7为例):......30211045064302335342 是一个7进整数。你没看错,省略号在前面,而且它不是无穷。可以对p进整数进行“正常”的加减乘除。1/5当然不是普通的整数,但它是一个7进整数:1/5 = ......54125412541254120的绝对值是0,1的绝对值是1,但2、3、4……的绝对值也是1,直到7的绝对值突然变成1/7. 然后,8、9、10……的绝对值是1,14的绝对值是1/7,依此类推,直到49的绝对值变成1/49……如果根据这个绝对值定义将所有p进整数看成一个空间,它里面每个三角形都是锐角等腰三角形,而如果取一个球体的话,球体中每一个点都是球心。图片来源:维基百科,作者Melchoir图片来源:维基百科,作者Melchoir一个自然的疑问是:这都是什么玩意儿???有这种疑问很正常,因为这属于抽象而反直觉的数学。对于数学工作者来说,这种绝对值的定义,恰好呼应了p进整数本身的定义。如果明白一开始那个一句话定义,那么现在这个“绝对值”的概念,就会显得顺理成章,甚至非此不可。这就是对数学概念的理解程度所导致的偏差。初看似乎不明就里的数学概念,一旦掌握了正确的思维方法,就会变得浅显易懂。但这又谈何容易!数学是如此抽象,必须经过多年的学习,慢慢熟习它的思考方式,才能理解它的内容。p进整数,以及它的推广p进数,不仅在望月新一以往的工作出现,事实上,它早已是数论中常用的工具。当年怀尔斯对费马大定理的证明也用到了p进数。望月新一此前发展的p进Teichmüller理论,则完全基于p进数,但p进数本身在这个理论中的地位,相当于高考数学中的自然数,只是最基础的砖石。而望月新一的新理论,“宇宙際Teichmüller理論”,还要高出一个层次。他觉察到,用p进数构建的理论仍然不足以抓住他想要研究的那个数论结构,于是他另辟蹊径,找到一个已经证明必定能抓住那个结构的数学对象,然后构建起新的数学理论,研究这个对象的性质,从而导出他寻找的性质。这大体就是宇宙际Teichmüller理论的发展动机之一。要构建这样的理论,需要同时用到远阿贝尔几何与表示论的工具,然而这两者格格不入,难以调和。为了折中,望月新一需要将理论的基底,也就是最基本的运算,拆成加法和乘法两部分,将它们消解为更复杂更抽象的结构,通过这些结构的互动和变形得到想要的性质,最后证明这些结构能够重新“復原”成某种加法和乘法。在互动和变形的过程中,他要在不同的宇宙(universe、全类)间游走,才能得到足够广泛而一般的结论。加法和乘法结合起来会碰到的障碍,对于它们消解而成的结构却不成问题,当然前提是通过恰当的变形,就像不同坐标系之间的变换。这就是为什么望月新一要将他的理论称为“宇宙際Teichmüller理論”。顺带一提,消解后的加法和乘法面目全非,不像通常的加法和乘法那样基于同一套“数字”,而是形同陌路,望月新一的术语alien ring structure就由此而来。这里的alien,并不是什么“外星”的意思,而是取拉丁语alienus的原意“属于他人、非自身、外来、奇怪”之义。很多地方写的什么“外星算术全纯结构”(alien arithmetic holomorphic structure),都曲解了望月新一的本义。看不懂?很正常。我自己的主要的研究领域是组合数学,虽然跟通常的Teichmüller理论有那么一丁点关系,但对于一般的代数几何我也没有正式学习过,所以只能在这里描绘它大致的图景。但这就是现代的数学。它研究的内容如此广泛如此深入,一个分支上的数学家已经难以理解另一个分支的前沿,更何况是代数几何这一最抽象的领域中耕耘的人特别少的分支远阿贝尔几何,它的最前沿的推广呢?更何况这个理论是如此抽象,处理的又是如此根本的数学结果。可以说,拥有足够的知识储备,有充足时间能够理解并审查望月新一理论的数学家,即使不能说屈指可数,也很可能不超过100人,这还是相当乐观的估计。望月新一本人这样说过,他的理论在数学界的处境,就像数学本身在整个社会中的处境:过于抽象,以至于人们不愿意去钻研和理解。理论的渗流虽然难以理解,但新理论的确有其吸引力。望月新一本人在代数几何这个领域早已名声在外,他在1996年就证明了格罗滕迪克提出的一个有关远阿贝尔几何的猜想,还因此被邀请在1998年的国际数学家大会上作45分钟演讲。既然他之前的工作证明了他有如此能力,那么他的新工作当然也值得认真对待。何况,望月新一宣称他的新理论能够用于证明数论中悬而未决的ABC猜想,这就更让人期待了。有些数学家被新理论所吸引,花了大量时间研读,自觉理解了箇中真谛,成为了给新理论摇旗呐喊的人。有些数学家同样被新理论说吸引,花了大量时间研读,但感觉还是解释不清,难以理解。有些数学家对新理论有兴趣,但没有时间研读,只能交给别的专家。有些数学家不懂这个分支,只能围观。望月新一的“宇宙際Teichmüller理論”(IUTT),就这样将数学界分成了两大阵营:觉得自己读懂的,还有觉得自己没懂的。围观群众不在此列。觉得自己读懂了的数学家,他们在积极地宣传这个理论,想让更多的人理解它。伊万·费先科就是其中一员。近年来,在世界各地召开了数次讨论IUTT的研讨会,费先科有不少牵线搭桥之功。他和其他数学家也撰写了不少介绍IUTT的文章和综述,试图用不同的视角来讲述这个理论。觉得自己没有读懂的数学家,有的仍在努力研读,有的尝试用自己知道的数学方法来从侧面验证IUTT的正确性;也有的已经放弃,转而对IUTT的正确性产生了怀疑。每个新理论都会经历这个阶段,这个等待验证的阶段。只有经过这个阶段,等到大部分专家接受它的正确性,新理论才算是正式确立,数学也得以进步。只是,对于IUTT来说,这个阶段似乎太长了一点。同样是代数几何中的新突破,另一位数学家彼得·索尔策(Peter Scholze)在2011年前后提出的perfectoid空间,很快就被数学界所承认,证据就是他从2012开始获得的一系列殊荣。要知道,他提出这个理论的时候还只是博士生,但在2012年答辩之后,没过多久就被母校波恩大学重新聘请为教授,以24岁的身份创下了德国史上最年轻教授的记录。熟悉德国教育系统的人,会更感叹他的成就,因为在德国,教授的地位很高,聘请的条件也因此非常苛刻。这更凸显了他的成就。那么,索尔策和望月新一,两人的理论为何遭遇迥异?索尔策的理论处于代数几何研究的主流,能理解的专家人数比较多,而望月新一的理论则不算主流,专家也比较少。有时候人多人少,也能决定理论被接纳的速度。索尔策的理论包含的新意,很快就能被读懂并应用到新的问题上;望月新一的IUTT则是全新的系统,略有格罗滕迪克的遗风,看起来波澜不惊,但结论出人意料,需要吃透整个系统,才能判断最后的证明是对是错,但过于浑然一体,也让别人难以进行旁敲侧击式的验证,偏偏这种验证也正是考验新理论最快的方法。对于望月新一来说,这些都是非战之罪。虽有忮心,不怨飘瓦。但望月新一自身也并非毫无责任。对于现代数学家的标准而言,他的个性也稍有乖张之处。即使他曾经在美国生活过,在回到日本之后,他就很不愿意到海外与其他数学家交流。他并非不乐意交流,证据就是在2016年的一次IUTT研讨会上,他曾通过视频通话接入会场,为与会数学家解答一些疑难问题。而他窝在京都长时间自己捣鼓这一套理论,也不是数学界通常的做法。一般来说,数学家至少会跟同一个实验室的同事讨论相关问题,在讨论之中,可以获得更多灵感,也能借此检验理论是否正确,或者投石问路,看看是此路不通还是大有可为。上一个口风像望月新一那么严的,还是证明了费马大定理的怀尔斯。当然,数学家经常开学术会议互相交流,少不免走漏风声。我当然不知道望月新一有没有跟同事讨论,很可能有但是同事的保密工作做得很好,也许没有但这个可能性很低,又或者关注远阿贝尔几何的人实在少。但结果就是,当这个证明出现之时,人们毫无心理准备。另一个可商榷之处,就是他在公开他的理论时,没有选择数学界一般会使用的预印本网站arXiv,而是直接放到了自己的个人页面上。当然,论文放到什么地方,这是他的自由,但也使数学界不能及时了解他的理论。不过话又说回来,这项工作引起的轰动,也很快让他的论文为数学界所知,所以其实问题也不大。可以说,他的个性或者说偏好,在客观上的确阻碍了他与同行之间的交流。结果就是,现在即使接受IUTT的专家越来越多(对于一个相对冷门的领域来说,十几个专家不算少数),但这些专家相当一部分是望月新一在日本的同事,还有过从稍密的同行。当然,也有相对独立的学者认为他们同样搞懂了望月新一的证明,但人毕竟也会犯错,很多旁观的数学家认为,现在认同的人数还不够多。数学这门学科虽然有无可辩驳的逻辑作为守门人,但它仍然是一种人类活动。新理论无论是对是错,总要有足够的人承认,才得以确立。确立后的理论也不一定正确,确立后被推翻的证明虽不多,但也有。只有当大部分专家都理解了这个理论,再也挑不出毛病,从而站到了“自认为懂”的阵营里,甚至能由此生发出新的结果,理论才算真正确立。没有相应专业知识,或者不肯花时间的人,都只是局外人,没有权利对理论的正误说三道四。但事情毕竟在进展。据说,目前IUTT的四篇论文中,前两篇构建的体系已经被许多专家认为成立,即使是那些觉得没有读懂整个证明的专家。目前争议的焦点之一,在于第三篇论文的推论3.12,也就是Szpiro猜想的证明关键。Szpiro猜想能推出ABC猜想,也难怪大家特别关注这个推论。据说,在之前的版本,推论3.12的证明只有几行,语焉不详,但我看到的几天前(2017-12-14)的新版本中,望月新一加上了好几页的注解。我只能希望这些注解能消除某些专家的疑惑。在伊万·费先科(Ivan Fesenko)的“科普”文章里提到,在关于望月新一证明的讨论中,有一个词经常被提到,就是“復原”。在望月新一构建的崭新数学体系中,他将同时附着在“数字”之上的加法结构和乘法结构拆开,将两者各自变形,然后重新“復原”。这种做法,先从根本上消解,之后再““復原”,即使对于久经抽象推理沙场的数学家而言也相当奇怪。而望月新一的体系,正系于这种“復原”的可行性。如果他的体系是正确的,如果他的“復原”是成功的,这将带来数学中代数几何分支的变革。比如说,ABC猜想的证明。比如说,最终理解加法和乘法之间的关系。但现在,没多少数学家能读懂他的证明。无论证明是对是错,也许数学界,至少是代数几何,恐怕难以复原为以前的面貌。他的体系,他的证明,已经将数学家拆开成不同的阵营,阵营内部不断发酵变化,引出了新的分歧。即使最后尘埃落定,得到的恐怕也只是望月新一式的“復原”。但这就是数学前进的必经之路。后记我一直觉得,写这篇文章的不应该是我。我做的是组合数学,代数几何只是外行,虽咨询了比我更懂的同事,但还是不敢说对它有足够的理解。但了解更多的人在哪里?我理解他们。这毕竟是一个高度抽象的学科,要向研究方向不同的同事解释尚且很有难度,更何况向一般人解释。这也许也是望月新一不喜欢媒体的理由。媒体肯定不懂他的理论,只知道这可能是一个重大突破,可以搞个大新闻。但这些媒体何尝愿意了解他的理论?写成报道,焦点多半在个人的私生活上,要么就是各种八卦。看的人是很多,但看完之后,给人们又留下了什么教益?但这个事情毕竟不能不做。正如他的新理论也需要知音来帮助宣讲,数学本身也要靠科普才能传播,人们才会认识到数学的重要性,而不是问出“微积分有什么用,又不能买菜”这种问题。怀有恶意的媒体固然会断章取义,但让更多人更了解数学的美妙也是件好事,值得再三权衡。这篇文章,由于本人知识所限,难免有许多疏漏,权当抛砖引玉。希望与远阿贝尔几何关系更密切的专业人士,能写出更深入准确的文章,让大家分享数学最前沿的这一大事。参考文献:
Ivan Fesenko, Fukugen, Inference Review, http://inference-review.com/article/fukugen
Mochizuki Shinichi, Inter-universal Teichmuller Theory I: Construction of Hodge Theaters, http://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20I.pdf
Mochizuki Shinichi, The Mathematics of Mutually Alien Copies: From Gaussian Integrals to Inter-universal Teichmüller Theory, http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
基础数学几何方向应该如何学习?
前辈们好,本人是一名大二数学系学生,目前大致了解点集拓扑基本概念(但还没怎么做题),代数拓扑看过基本群和同伦型,复变和抽代这学期正在学。之所以问这个问题是因为之前看到中科大梁永祺老师的主页看到了这样一句话:让我感觉非常奇妙,也想见识一下这精华的部分(希望在大四毕业前能做到吧!😭),也激发了我学习代数与几何方向的想法。其中代数方向其实学习路径了解的差不多了,大致就是学完抽象代数后同调、交换和lie代数都可以学了,但几何方向还不甚了解,很多几何方向的课学校都是大三大四才有,甚至开不出来,因此只能自行学习。这个问题其实之前也问了不少前辈,但发现每个人的学习路径(有的是从微分几何上同调那边学,有的是先接触的代数拓扑等)都不一样,而几何方向又十分繁杂,理不清学习顺序,手头上有很多纸质书、电子书、网课等也无从下手;或者有些内容可能比较难且深入某个具体方向,以后不做这个方向可能根本不会用到,不知道该学多少合适。所以想多听取一点建议以便自己之后逐一尝试,例如:学习路径、参考书目、课程视频等等。谢谢各位!😘
传说中的大神级数学天赋是怎么样的?
以下短文出自2022年2月27号,为我发在朋友圈的一段感想,如今分享出来lyh前辈算是我高中时期数学的启蒙人之一,如今几年过去,回看过去,甚是感慨学数学早点把握方向很重要,直到你做研究那天,你会发现很多你曾学过的东西都派不上用场。当你有扎实的基本功以后,直接倒着学,这样效率或许比按部就班地按顺序学要高得多。看不懂文献怎么办,继续看,这样你才能发现自己需要学什么。然后再倒回去补知识,这种方法才是适合于做研究的。我对竞赛不感兴趣,学习数学的方向完全遵从内心的选择,顺利地从微分几何和代数几何中选择了代数几何。然后发现代数几何的浩瀚,似乎能囊括几乎所有重要的数学领域,至少纯数学是如此。我并不认可数学考得高分就是学得好,曾经高中被数学老师冷落的经历还历历在目。我看的第一本英文书就是泛函分析,我没系统学过点集拓扑。这些都不能说明什么。我15岁开始看EGA,这是我当时读过的最难的书。我被Grothendieck的风格所深深震撼,也就那时候,我开始学习法语就是为了读原版的EGA。我不认可大神级天赋就真的能16岁无障碍读EGA,万丈高楼平地起,天才也不例外,况且这个世界上可能都没有所谓的天才。我觉得真正的大神级天赋,就是Peter Scholze这种学数学、做数学仅仅是为了理解数学的人,他做数学不是为了成为某个领域的leading figure,而是for his own sake。这多自在、多自由,就如同逍遥游一样,也就只有这样才有可能做出永垂不朽的工作吧。
如果两个对象的余极限同构,那么这两个对象同构?
令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美化下,任何完美的$\mathbb{F}_p$-代数固定不变。这是接下来更加具体的反例的所有抽象背景:取$A = \mathbb{F}_p[x]$,它的完美化是$\mathbb{F}_p[x^{\frac{1}{p^{\infty}}}]$,这是一个通过邻接所有$x$的$p^n$次方根得到的环。然后取$B = \mathbb{F}_p[x^{\frac{1}{p^{\infty}}}]$为$A$的完美化。更一般的,我们可以取$A$为任何不完美的$\mathbb{F}_p$-代数,然后取$B$为它的完美化。Bhatt写的notes中的Remark 1.4前有一个更加一般的论断,这是关于什么时候两个代数有同构的完美化。但是我对泛同胚还不够熟悉,无法对此发表任何评论。
仿射概形上的概形什么时候仿射?
问题:令$X$为一个概形。令${\rm{Spec}}(R)$为某个环$R$的仿射概形。假设有一个概形态射$f:X\rightarrow{\rm{Spec}}(R)$,那么$f$应该拥有什么性质,使得$X$也是一个仿射概形?或者说什么条件能让$X$仿射?答案:如果$f$是一个仿射态射,那么$X$由定义可知是仿射的。这是一个“当且仅当”的命题。如果$X$是仿射的,那么$f$也是仿射的。见Vakil的Foundations of Algebraic Geometry中的theorem 7.3.7,或者Stacks Project中的29.11.3 and 29.11.4。因此特别的,若$f$是一个闭浸入,则$f$是仿射的,从而$X$是仿射概形。
类与集合以及格罗腾迪克宇宙
下面我来讲一下我对Grothendieck universes粗浅的理解。首先,我们知道当年Cantor的朴素集合论是有漏洞的,这些漏洞所衍生出的悖论,比如罗素悖论,引发了第三次数学危机。后来为了解决这些问题,发展出了诸多新的理论,其中一个就是如今也经常使用的ZFC公理系统。在ZFC框架下,所有的数学对象都是集合,而所谓的所有集合的“集合”严格来说不是一个数学对象,它不能构成一个集合,那么我们称它为一个class。class的定义很明了,它的成员就是所有享有某些共同性质的数学对象,其实就是最初对集合的定义,现在区分开来,因为它不一定构成一个集合。如果一个cass不能构成一个集合,我们称它为一个proper class。接一下来,来到Grothendieck universes,它是上个世纪60年代由Grothendieck提出来的用来避免proper classes的。Grothendieck universe是一个非空集合,在这个集合里面,所有通常的集合的运算封闭,比如说取一个集合里的元素、索引并集将两个元素构成一个集合等,这样在计算中就不用担心出现不构成集合的情况。后面,Grothendieck还加了两条公理,分别是U A和U B,其中U A如今比较常用,比如在范畴论中,该公理就是每个集合都包含于某个Grothendieck universe中。其实关于class和集合,这是很重要的两样不同的东西,有必要加以区分,在写作的时候需要说明清楚。比如说,在范畴论中,我们有big category和small category,其中big category就是所有对象构成class的范畴,small category就是所有对象构成集合的范畴。但是写作的时候我们一般从头到尾都只会用到一种范畴,因此会特此说明我们的范畴是指什么什么。------------------------------------------------------本文原于2021年12月26日发布于QQ空间
望月新一与他天书般的论文,展现了纯数学与我们的距离
导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenko。Fesenko立即将论文下载下来,开始阅读。但是很快他就“如坠云雾”之中。他说:“简直不可能理解那些论文。”Fesenko给望月新一所在算术几何领域的几位顶级专家发了邮件,有关该证明的消息迅速传开。没过几天,数学博客和在线论坛开始热烈地讨论起来。但是对于许多研究人员来说,最初的兴奋很快变成怀疑。所有人,甚至那些和望月新一专业领域最为接近的人,也像Fesenko一样感到困惑不已。为了完成证明,望月新一开创了一个新的学科分支——一个即使按照纯数学标准来看也极其抽象的分支。在论文公开几天后,威斯康星大学麦迪逊分校的数论理论家Jordan Ellenberg在自己的博客上写道,“你会感觉自己好像是在看一篇来自未来或外太空的论文。”3年过去了,望月新一的证明依然是一个数学谜团,既没有被驳斥,也没有被广泛接受。据望月新一估计,一名数学专业研究生大约需要十年时间才能理解他的研究,Fesenko则认为即使是一名算术几何专家,可能也需要500个小时才能弄懂。到目前为止,只有4名数学家表示他们能够读懂全部证明。望月新一本人也为他的证明平添了几分神秘色彩。虽然他可以说一口流利的英语,但是截至目前他只在日本用日语谈论了自己的研究,而且拒绝了到其它地方发表演讲的邀请。他不接受记者采访;多个采访请求都没有得到回应。他会回复其他数学家的电子邮件,也不拒同事来访,但是他仅有的公开信息就是他个人网站上零零碎碎的一些内容。2014年12月,他写道,若要理解他的研究,“研究人员需要摒弃他们维持多年的旧有的思维模式”。在比利时安特卫普大学的数学家Lieven Le Bruyn看来,望月新一的这种态度显得目中无人。今年早些时候,他在博客上写道,“是不是只有我一人觉得望月新一是在藐视整个数学界”。现在,数学界正在尝试解开这个问题。2015年12月,亚洲以外首个有关望月新一证明的研讨会在英国牛津举行。望月新一不会亲身到场,但是据说他愿意通过Skype回答研讨会上提出的问题。组织者希望这次讨论能够激发更多数学家花时间去熟悉望月新一的观点——希望改变对望月新一的态度。望月新一在其最新的验证报告中写道,他的理论之于算术几何“恰似纯数学之于人类社会”。他在向数学界传达自己的抽象研究时遇到困难,而数学家群体在向数学界以外的广大群体传达其研究成果时也常常面临挑战,二者何其相似!核心所在abc猜想涉及a + b = c型的数值表达式。它存在几个略有不同的版本,关系到能除尽a、b和c的质数。每一个整数都能以独一无二的形式表示为一连串质数的乘积;例如15 = 3 × 5,或84 = 2 × 2 × 3 × 7。原则上,a和b的质因数与二者之和c的质因数没有关联。但是,abc猜想将它们联系了起来。abc猜想的假设大致而言指,如果大量小质数能除尽a和b,那么只有少量大质数能除尽c。1985年,法国数学家Joseph Oesterlé在德国的一次演讲中,无意间谈到一类特别的方程式,首次提出来这种可能性。当时的观众席中坐着目前在瑞士巴塞尔大学任职的数论理论家David Masser,他意识到这个猜想的潜在重要意义,之后以一般形式将其公之于众。现在,这个猜想被归功于他们二人,并且常常被称为Oesterlé–Masser猜想。几年后,哈佛大学的一位数学家Noam Elkies意识到,如果abc猜想是真的,那么将对丢番图方程的研究产生深刻影响。他发现如果abc猜想得到证明,那么将一举解决大量著名的未解丢番图方程。因为,它可以给方程解的大小做出明确限制。例如,abc猜想或许可以表明丢番图方程的所有解都必须小于100。为了找到正解,人们所要做的就是代入0到99之间的每一个数字进行验证。而没有abc猜想的话,就需要代入无限多的数字。Elkies的研究意味着abc猜想可能超越丢番图方程史上最重要的突破:证实美国数学家Louis Mordell在1922年提出一个假设——大部分丢番图方程要么无解,要么只有有限数量的解。1983年,时年28岁的德国数学家Gerd Faltings证明了该猜想,三年后因此获得了数学界人士梦寐以求的菲尔兹奖。但是Faltings说,如果abc猜想被证实,你不仅知道有多少解,“还可以直接将它们全部列出来”。Faltings在证明Mordell猜想后不久,便开始在普林斯顿大学任教,很快他的轨迹就和望月新一的产生了交叉。1969年,望月新一出生于东京,在他小时候一家人就搬到了美国,他在那里长大。他上了新罕布什尔的一所精英高中,早早地就展露出过人的天赋,不到16岁就成为普林斯顿大学数学系的一名本科生。很快,富有创造性的思维令他成为一个传奇,他开始直接攻读博士。认识望月新一的人都说他具有超自然的全神贯注的能力。“从他还是学生的时候起,每天从早到晚都在学习。”牛津大学数学家金明迥说,他在普林斯顿大学认识了望月新一。金明迥记得以前在参加完一场研讨会或专题会后,研究人员和学生一般会一起出去喝几杯,但是望月新一不会去。“他并不是天生内向的人,只是全身心地投入到了数学研究中。”Faltings是望月新一本科毕业论文和博士论文的导师,他看到了望月新一的过人之处。“很明显他天资聪颖。”他说。但是,做Faltings的学生并不是一件容易的事。“Faltings是最令学生生畏的一位老师。”金明迥回忆道。他能敏锐地发现错误,即使是知名的数学家,在和他交谈的时候,也常常会感到无所适从。Faltings的研究对美国东海岸大学里面的许多年轻数学家具有非常大的影响。他的专业领域是代数几何,从20世纪50年代起,因为Alexander Grothendieck——20世纪最伟大的数学家,代数几何转变成一个高度抽象且理论性的领域。“与Grothendieck相比,”金明迥说,“Faltings没有太多耐心去从哲学角度思考数学。”他的数学风格表现为需要“大量的抽象背景知识,但是同时也以解决实际问题为目标。望月新一关于abc猜想的证明正好符合这一点”。心无旁骛博士毕业后,望月新一在哈佛待了两年,然后在1994年他25岁的时候回到了出生地日本,加入RIMS。金明迥说,虽然望月新一在美国生活了多年,但是“他在某些方面并不适应美国文化”。不仅如此,在异国长大可能加重了他作为少年数学天才的孤独感。“我认为他确实受了一些苦。”RIMS不要求它的职员给本科生授课,望月新一在此如鱼得水。“在20年的时间里,他可以不受外界过多干扰,一心一意地开展自己的研究。”Fesenko说。1996年,望月新一因为解决了Grothendieck提出的一个猜想而在国际上声名鹊起;1998年,他受邀在柏林国际数学家大会上发言,名气更胜从前。虽然备受推崇,但是望月新一却逐渐淡出主流视野。他的研究越来越抽象,同行们越来越难理解他的论文。从21世纪的头几年开始,他不再参加国际会议,同事们说他几乎没有再离开过京都。“连续多年不靠别人,一个人专心致志做研究需要投入非同一般的热情。”斯坦福大学数论理论家Brian Conrad说。不过,望月新一实际上还是和数论同行专家们保持着联系,他们知道他的最终目标是abc猜想。他几乎没有竞争对手:大部分数学家都认为这个问题非常棘手,基本都敬而远之。2012年初,关于望月新一快要完成证明的消息传开了。然后就出现了8月的新闻:他把论文发在了网上。9月,Fesenko成为日本之外第一个与望月新一谈论其默默公开的这项研究成果的人。Fesenko本来是要拜访玉川安骑男,顺道也见了望月新一。二人在一个周六见面了,地点在望月新一的办公室。里面很宽敞,书籍论文都摆放得井井有条,从办公室望出去,可以看到附近的大文字山。Fesenko说那是他“一生中见过的最整洁的数学家办公室”。两人在皮沙发上坐下后,Fesenko开始询问有关望月新一研究成果的各种问题,并讨论后续可能发生的情况。Fesenko说他提醒望月新一要以俄罗斯数学家、拓扑学家Grigori Perelman(格里戈里·佩雷尔曼)为戒:2003年,Perelman解决了世纪难题庞加莱猜想,一举成名,但是之后他逐渐退隐,日渐疏远朋友、同事和外界。Fesenko认识Perelman,认为Perelman和望月新一的性格迥然不同。众所周知,Perelman社交能力很差(而且不修边幅),但望月新一在众人眼里却是一个擅长表达且待人友好的人,只不过对工作以外的生活非常保密。正常来说,一项重大证明公开后,数学家会拿来阅读——一般只有几页——而且可以理解其整体论证方法。偶尔会有些证明更长一点、更复杂一点,前沿专家可能需要花上好几年的时间才能对其进行充分评估,判断它是否正确。Perelman关于庞加莱猜想的研究就是这样被接受的。即使是像Grothendieck的那样高度抽象的研究,专家们也能够将其大部分的新观点与自己所熟悉的数学对象联系起来。只有当所有疑惑都已廓清,期刊才会将证明发表出来。但是,几乎每一个研究望月新一证明的人,最后都发现自己一头雾水。有些人感到茫然无措:望月新一在描述他的一些新的理论说明时,使用的语言近乎天书:他甚至将他创造的新领域称为“宇宙际几何”。“一般而言,数学家都是非常谦逊的,不会声称自己所做的是一场关系全宇宙的革命。”巴黎第六大学的Oesterlé说。他在验证望月新一的证明,但是没有取得什么进展。因为望月新一的证明明显脱离了过去已有的东西。望月新一尝试从数学的集合论基础(许多人所熟知的维恩图)入手,彻底革新数学。一直以来,大部分数学家都不愿意花费时间去理解他的研究,因为他们看不到什么明显回报:很难看出望月新一创建的新理论可以用于计算。“我试着看了一些内容,之后放弃了。我看不懂他的研究。”Faltings说。2014年,Fesenko对望月新一的工作进行了详细的研究,并于当年秋天再次去RIMS拜访了望月新一。他说他已经证实了望月新一的证明。(另外三名表示已经证实该证明的数学家也在日本和望月新一一起工作了很长时间。)按照Fesenko的说法,宇宙际几何的核心要义是用全新的眼光看待整数——暂不考虑加法,将乘法结构看成一种可延展可变形的结构。这样一来,标准乘法就只是结构家族中的一个特例,就像圆形是椭圆的一个特例一样。Fesenko说望月新一自比为数学大师Grothendieck——这并不过分。“过去,我们有的是望月新一之前的数学;现在,我们有的是望月新一之后的数学。”Fesenko说。但是到目前为止,寥寥几个能够理解望月新一研究的人却很难向他人解释。“每一个尝试这么做的人我都认识,他们非常睿智,但每次眼见着快要成功了,却都无疾而终。”一位不愿具名的数学家说。他说这种情况让他想起了英国喜剧团巨蟒组(Monty Python)的一个故事,一位作家写出了全世界最好笑的笑话。每一个读过的人都笑得丢了性命,因此无法将笑话讲给别人听。Faltings认为这就是问题所在。“你有好的想法还不够:你还要能够向别人解释清楚。”他说如果望月新一想要他的工作能够被人接受,就应该与人进行更多的沟通。“一个人有权利我行我素。”他说,“如果他不想传播自己的理论,他就没什么义务。但如果他希望被认可,就必须做出妥协。”结局不定对于望月新一而言,或许会很快迎来一些转机,美国克雷数学研究所将在牛津举办一场万众期待的研讨会,预计包括Faltings在内的一众业内重要人物都将出席。金明迥和Fesenko是会议的组织者,他说几天的演讲不足以阐明全部理论。但是,“希望在会议结束后,有相当一部分人能够愿意投入更多精力来研究这个证明”。大部分数学家都预计还需要很多年才能得出确定结论。(望月新一说他已经把论文投给期刊了,大概仍在评审中。)研究人员希望有一天能够有一个人不仅自己懂,还能解释出来让别人懂。问题是,很少有人愿意成为这样的人。展望未来,研究人员认为未来的未解问题可能不再会像这样复杂棘手。Ellenberg指出,在新的数学领域,定理的陈述一般都是简单的,而且证明非常简短。现在的问题是望月新一的证明是否会像Perelman的那样被接受,还是走向另一种结局。一些研究人员以普渡大学著名的数学家Louis de Branges为例,提醒应该保持谨慎态度。2004年,de Branges声称证明了黎曼猜想——许多人视之为数学领域最重要的一个未解问题。但是,其他数学家对此表示怀疑;许多人说de Branges的理论不符合传统,而且写作风格怪异,他们没有兴趣细究;很快该证明便从人们的视线中消失。Ellenberg认为对于望月新一的研究,“不能用一刀切的方式来评价”。即使他关于abc猜想的证明不正确,他的方法和理念仍有可能渗透进数学界,并有可能在其它某些方面发挥作用。“根据我对望月新一的了解,我真的认为他的论文里面极有可能隐藏着某种精彩或重要的数学内容。”Ellenberg说。不过他也补充表示不排除结局走向相反的方向。“我认为如果我们简单地把它遗忘了,那将是一件不幸的事。令人悲哀。”ⓝNature|doi:10.1038/526178a原文发布在2015年10月7日的《自然》新闻专题上原文作者:Davide Castelvecchi本文转自 https://zhuanlan.zhihu.com/p/43348594 。点击右边标题阅读英文原文:The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof