·

我开发的宇宙级APP竟然成为了其他世界的系统

发布时间:2024-12-25 12:15:26阅读量:43
普通文章
转载请注明来源

陈木是弦圈一名默默无闻的全栈程序员,他每天身兼多职,任劳任怨地工作,既负责网站前端的开发与维护,又得兼顾后端的开发与维护。前段时间,陈木又接到了新的任务,要求他负责弦圈APP相关的开发工作 计划开发弦圈的桌面端版和APP版

于是,陈木在挑选了众多技术与框架后,选择了使用Universal React Native Pro Max进行APP的开发,这是一个近期在全世界都很火的框架。Universal React Native是基于传统的React Native通过最新的universal技术[1]进一步迭代升级,从而能达到用React Native语言开发任何东西原生的一个技术框架,而Pro Max则是它的超级升级版,你甚至能用它编程纳米机器人和可控核聚变引擎。

开发的日子时间总是过得飞快,眨眼间就过了几万年,陈木头发都秃了,才终于从工作中缓过来。这时陈木也收到放假的通知 弦圈APP先开发到这里......,他松了口气,终于可以放松一下,并开始着手考虑自己一直以来的设想——开发一个宇宙级APP。

所谓的宇宙级APP数亿年以来,一直都是各大星域争相竞争的研究对象,指的是通过开发宇宙级API接口,然后通过宇宙级API来对各个宇宙单位进行编程,最后达到能自动化操纵一片星域的效果。

借助宇宙级API接口,你可以编程空间,这样就能实现空间折叠、空间扭曲,以及空间定点传送。理想情况下,还可能实现跨星域的定点传送,从而取代效率较低的曲率飞船。空间定点传送的代码很简单

import * as Universe from 'universe'

const { Space } = Universe

//这里x,y,z为空间坐标,Space(x, y, z)表示某处空间
const space = Space(x, y, z)
//获取该空间中的物体
const Object = space.get({
    object_id: '75d1f867-a39f-4858-9116-904a88de65e8'
})
//将物体传送至另一处空间中,其中x1, y1, z1为另一处空间的坐标
Object.transport(x1, y1, z1)

你还可以编程时间,直接快进或回退某个物体到某个时间点,从而实现存档的效果。修改时间的代码也很简单

import * as Universe from 'universe'

const { Space, Time } = Universe

//这里x,y,z为空间坐标,Space(x, y, z)表示某处空间
const space = Space(x, y, z)
//获取该空间中的物体
const Object = space.get({
    object_id: '75d1f867-a39f-4858-9116-904a88de65e8'
})
//这里得到物体的时间对象
const time = Time(Object)
//修改物体的时间
time.setTime(t)

这些年,工作之余陈木一直在研究宇宙级APP如何开发,其实原本实现任何一个简单功能的代码都是十分复杂的,动则上亿亿行代码,像上面那个空间传送与修改时间功能,如果是原来的话,至少要写200亿亿行代码。当然这还算好了,像恒星级引擎的开发,随随便便就得写1万亿亿行代码。这需要无数程序员在AI帮助下日以继夜的工作数亿年才可能完成,顺带一提,程序员开发所用的电脑一般是行星级电脑,屏幕都有一个地球大小,一行代码的长度往往能绕地球一圈。

如今简洁的代码,完全是无数天才工程师们历尽心血,构建大量星系级精密物理设施,以及编程上写了大量库以及进行了大量包装,最后实现的。所谓的代码实现空间定点传送,底层原理可以理解成自动化任意地点生成虫洞,然后精确定位虫洞的终点。

因为现在宇宙级API技术经过数亿年发展,也逐渐成熟,因此陈木觉得是时候开发一款有趣的宇宙级APP了。所谓的修仙小说系统文,在十亿年前的中国非常火爆,那个时候陈木也是这类小说的迷,经常一看就不可收拾。那个时候别说行星级电脑、恒星级引擎了,人类连太阳系都没有真正离开过。

而如今一切都已成熟,陈木终于可以尝试将小说中的内容变为现实,通过开发一款宇宙级APP,构建一个属于自己的世界出来。所谓世界,首先就需要有时空和法则,空间是所有物体的容器,而时间则借助法则来使物体无规则运动起来。顺着思路,陈木写了如下代码:

import * as Universe from 'universe'
import rule from './rule.tsx'

const { Space, Time, Function } = Universe

//构造一个空间对象Space()
const space = new Space()
//构造宇宙法则
const f = Function(rule)
//构造时间
const time = new Time(f)
//创建一个世界雏形
const world = new Universe(space, time, f)


  1. Universal技术:虚构技术,一种能让一种编程语言或技术框架应用于所有场景开发的技术。


0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

弦圈编辑器功能介绍及使用技巧

一般编辑器分为Markdown编辑器和富文本编辑器两种,而弦圈目前所用编辑器为富文本编辑器,暂不支持Markdown编辑器。个人认为富文本编辑器对新手更为友好。富文本编辑器用法跟Word大致相同,基本功能不再赘述。在本文中,我们将介绍一下弦圈编写文本所用编辑器的一些特殊功能。这些功能包括插入词条、添加参考文献、引用文献。插入词条插入词条指的是在文本中插入一条圈子百科中词条的链接。主要用于文本中一些难懂且解释需要篇幅的术语。在编辑器中直接点击下图按钮即可进行输入。点击后会弹出对话框,根据提示把带星号的项填好,点击下面的“插入”按钮即可。插入词条后,编辑器中结果如下:发布文章后的效果如下,点击该链接会弹出该术语在圈子百科中的相应解释,非常方便查找相关术语的意思,不用多个页面互相切换:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。添加参考文献添加参考文献指的是在文章的中插入论文格式的参考文献。该功能用于帮助用户生成美化过的、条理性强的、符合论文格式要求的参考文献。在编辑器中直接点击下图按钮即可进行输入。点击后会弹出输入框如下图,根据提示将带星号的项填好,然后点击下方蓝色“确定”按钮 ...

群胚之间的全忠实函子在对象上单射?

我的提问:令$\cal{C}$和$\cal{D}$为两个群胚,即态射都是同构的范畴。令$F:\cal{C}\rightarrow\cal{D}$为一个从$\cal{C}$到$\cal{D}$的全忠实函子。然后$F$在对象上单射吗?换句话说,对象函数$F:{\rm{Ob}}(\cal{C})\rightarrow{\rm{Ob}}(\cal{D})$是单射的?回答:不是。给定任意一个集合$X$,我们可以构造一个叫做$X$上的非离散群胚的群胚,它对$x, y \in X$都有一个唯一的同构$x \to y$。每一个集合间的函数$f : X \to Y$都能导出一个非离散群胚之间的全忠实函子,不管$f$是否是单射的。事实是范畴(不一定群胚)间的一个全忠实函子$F : C \to D$能导出一个对象同构类上的单射。想知道为何,令$i : F(c_1) \cong F(c_2)$为一个同构。因为$F$是全的,$i = F(i')$对某个$i' : c_1 \to c_2$,然后类似的$i^{-1} = F(j)$对某个$j : c_2 \to c_1$。于是,我们有$F(i' \circ j) ...

幂零理想层的局部截面是什么样的?

提问:令$(X, O_X)$为一个概形,然后$I$是一个幂零的理想层,即$I^n=0$对某个$n$。这是否意味着每个$I(U)$都是$O_X(U)$的一个幂零理想?回答:令$I\subseteq \mathcal{O}_X$是一个理想层,然后令$\mathcal{F}$为一个预层,它对每个$X$的开集$U$,都对应一个理想$I(U)^n\subseteq \mathcal{O}_X(U)$。你说$I$是$n$阶幂零的如果$\mathcal{F}^\#$是零,其中$\#$用于表示层化。但是因为$\mathcal{F}$是一个分离的预层,作为$\mathcal{O}_X$的子层,我们有$\mathcal{F}=0$当且仅当$\mathcal{F}^\#=0$(例如参考[1, Tag00WB])。因此,我们推断出以下结论:事实:令$X$是一个概形,而$I$是$\mathcal{O}_X$的一个理想层。然后下面的都是等价的:1. 对所有开集$U$,理想$I(U)^n$是零。2. 预层$U\mapsto I(U)^n$的层化是零。[1] 多位作者, 2020. Stacks project. h ...

如果我看数学看得很慢,这没问题吗?

我在一所知名的数学学院读数学本科,今年是最后一年。然而我发现一件事情,那就是我好像看数学的速度要比班上其他同学慢。比如,无论我尝试多少遍,我似乎都是班上最后做完作业的人,并且我很少有空余时间进行课外阅读。你觉得有哪些建议或者技巧是我可以尝试的?或者说为了节省时间,我是不是应该跳过细节?回答1:提问和给出的信息有些模糊,可能无法给出令人满意和有意义的答案。但我仍然会尝试给出一个答案:我想我们每个人都知道数学中的这些短语,如“easy to see”或者类似的词组,他们能占据一个人数小时注意力,并且显然会导致读完一篇文章所需要花费的时间,比理所当然的要更长。因此如果你为此付出了更多努力,而你的同学们却没有,那读得慢确实没什么问题。还有当你第一次阅读文本的时候,你是否会尝试理解每一个证明中的每一处细节?我非常肯定这不是你每个同龄人都能做到的。并且我发现有几种不同的“类型”。比如说我在第一次看时,往往需要先有个大概的了解,然后再深入理解更为复杂的证明和细节。我同时喜欢多次反复阅读一个文本,因为我记性不好,这或许会让我重复一些东西,但当然也意味着我第一次会看得很快,但也很肤浅(所以我先从鸟的视角 ...

说过多少遍不要All in AI!初创公司没有一个产生现金流的业务就搞AI无异于在裸泳

这段时间是AI大火的时期,企业之间大模型的竞争已经进入白热化阶段,很多初创公司也相继涌入了AI大模型赛道。不少人争相加入AI赛道的原因,是相信,这将会是一场新的工业革命,或者说这相当于上次的互联网革命。这里我并不否认这种观点,而是想指出,现在没人真的能确定这场AI大热是否真的能产生堪比工业革命的收益。如果商业化落地成功,且能满足大量的市场需求从而能产生大量的利润,才能说这或许是一场工业革命。而且换位思考一下,如果你确定这是次巨大的机缘,那为什么要公之于众呢?不仅公之于众还要大肆宣扬,生怕有人不知道,这正常吗?是不是跟股市一样,大喊着“牛市”了,要涨了,然后一堆韭菜入局。目前来看,AI的局势还处在混沌摸索之中,绝大多数人的钱注定会打水漂,已经有大量的AI公司倒下了。讽刺的是,有些通过AI热赚到钱的,反而是卖课割韭菜的。然后关于目前的行情,从明星AI创业公司的动向,也能看出一二,不少明星创业公司选择卖身,或者创始团队分崩离析,还有创始人流下烂摊子直接跑路的。就连最大的OpenAI如今创始人团队都走光了。连明星创业公司都如此,如果你这时候选择All in AI,你想想那失败的风险有多大,就跟 ...

范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的

我的提问:众所周知,范畴中对象之间的态射都是保持结构的。但是在一本教材中,我发现它说态射一般是保持结构的。这是否意味着存在不保持结构的态射?回答1:一个范畴不需要非得由带有某些额外结构的集合与保持这个结构的映射构成。不是这种类型的范畴的例子有:给定任意一个群$G$,我们可以构造一个范畴,它由一个对象$*$和每个$g\in G$的一个态射$\varphi_g\colon *\to *$组成。这里,态射的复合通过群运算来定义,并且$\operatorname{id}_* = \varphi_{e}$对于单位元$e\in G$。给定一个偏序集$(P,\le)$,我们可以构造一个范畴,它由对象集$P$和每个满足$x\le y$的$x,y\in P$有且仅有一个的态射$x\to y$组成。拓扑空间的同伦范畴,它的对象都是拓扑空间,每个态射$X\to Y$是一个连续映射$f\colon X\to Y$的同伦群$[f]$。回答2:我认为问题出在这里众所周知,范畴中对象之间的态射都是保持结构的。事实并非如此。范畴这个概念推广了“带有结构的集合和保持结构的函数”,例如群和同态,或者拓扑空间和连续映射。但 ...

愚者趋乐,智者避苦——叔本华的《人生智慧箴言》

叔本华(Arthur Schopenhaue)是19世纪的德国哲学家,他的个人哲学思想融合了东方佛教和欧洲哲学,对后世影响深远。他的哲学主要在《作为意志和表象的世界》一书中表达,这本书于叔本华年轻时出版,但当时的读者反应相当冷淡;直到晚年,叔本华写了《附录与补遗》作为《作为意志和表象的世界》的补充和说明。由于内容更加精简浅近,很快的引起热烈回响,也令他的主要著作《作为意志和表象的世界》重新受到世人重视。叔本华谈论的人生智慧,是探讨如何尽量幸福快乐地生活的一门艺术。虽然在他的主要著作中,他大致认为在我们的世界,人类期望追求稳固持久的快乐,是一种妄想。这是因为人本质上是受意志不断的驱使,而意志始终处于一种欲求不满的状态,所以使得人总是在渴求和无聊之间摆荡,难以得到安宁。人生的幸福有两个敌人,一是痛苦,二是无聊。……我们在何种程度上成功地远离了一个敌人,就在同样程度上接近了另一个,反之亦然。所以,人生其实就是在痛苦与无聊之间像钟摆一样摆动。不过在《人生智慧箴言》里,他还是试图思考:若要尽量幸福快乐生活,该怎么做最靠谱?叔本华的分析,从跟人有关的三个层次开始。人之所是、人之所有、人之形象一个人 ...

丘成桐:如果我说复几何“无用”,你会不会很失望?

“如果我说复几何暂时还没有跟大数据、人工智能有密切关系,你会不会很失望?”这个是《中国科学报》记者在7月23日举行的复几何与多复变国际会议上,向数学家丘成桐询问类似复几何这这种基础数学研究领域的重要意义时,这位菲尔兹奖得主、美国国家科学院院士、中科院外籍院士、哈佛大学终身教授丘成桐如此直接了当的回答。他说很多领导在听数学家的汇报时,就经常会问这样的问题:“你这个研究有什么实际应用?对发展人工智能等前沿科技有没有好处?”如果科学家的回答是“没有”,领导就会感到很失望,可能就不再支持该项研究了。“应用研究在中国的项目申请上始终占优势,跟这个原因有关。”丘成桐直言。而实际上,这种看似暂时没有什么应用背景的基础学术研究却是非常重要的。其实,基础研究的重要性毋庸讳言,从前不久的“中兴事件”就可见一斑。“中兴事件”涉及的“芯片”问题,表面看是应用的问题,但深层次原因其实是中国在的基础理论的薄弱,也是长期立项重应用轻基础的结果。“没有基础理论的支撑,知其然不知其所以然,只能模仿别人,一个小小的芯片就能‘卡了你的脖子’。”美国加州大学洛杉矶分校终身教授刘克峰坦言,中国过度关注应用,但在基础研究方面却比 ...

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \B ...

如果两个对象的余极限同构,那么这两个对象同构?

令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美 ...

正弦函数的幂级数展开是否是柯西序列?

考虑正弦函数的幂级数展开$$S=(\sum_{i=0}^{j}\frac{(-1)^{i}}{(2i+1)!}r^{2i+1})_{i\in\mathbb{N}}, 0\leq r\leq2\pi。$$那么$S$是否是柯西序列?令$\varepsilon>0$。是否存在$N>0$使得对于任意$m,n\geq N$,都有$$\left|\sum_{j=n}^{m}\frac{(-1)^{j}}{(2j+1)!}r^{2j+1}\right|\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}<\varepsilon?$$证明1:众所周知,$\sin x$的幂级数展开在任意地方都是收敛的(你可以使用比值审敛法来证明这个结论),然后所有收敛数列都是柯西的,因此$S$是柯西序列。证明2:既然这是研究一个紧致集里的级数,最简单的方法是用下面的不等式:$$\sum_{j=n}^{m}\frac{1}{(2j+1)!}r^{2j+1}\leq\sum_{j=n}^{m}\frac{1}{(2j+1)!}(2\pi)^{2j+1}<\varep ...