·

技术是否是企业的护城河?

发布时间:2024-10-22 22:57:25阅读量:16
普通文章
转载请注明来源

我认为不是,真正的护城河应该是用户生态。技术这东西并不需要先天就很强,一个产品哪怕前期技术很烂,只要能积累用户,并把生态做起来,就能逐步取得成功。而技术这东西完全可以通过后天弥补。

​从这个角度来看当今的AI应用,几乎绝大多数AI应用都没有护城河,哪怕是toC应用也是很容易被取代。目前AI巨头谷歌,其护城河也不是靠AI技术,这也很容易看出来,除了谷歌外还有很多搜索引擎,但他们几乎都无法动摇谷歌的市场份额。至于OpenAI就不提了,把它看成微软的子公司就行了,微软技术不如谷歌,因此希望通过OpenAI来赶超谷歌。

​因此如果是技术型创业,即产品的核心竞争力是技术的公司,就非常容易被其他竞争对手所淘汰。只要别人技术上突破了,功能上比你的更好,马上用户们就都会去用它的产品。哪怕还有一小部分用户留在你这,你成本也吃不消啊。

现在看到ai热潮,脑子一热就打算All in AI的,基本上就是小白鼠。不说太遥远的明星AI初创公司,就说小一些的初创公司,哪怕你能拿到1000万融资,哪怕你用户数30w,那又如何,最后还是解散了。

​而且想想即便是资本发达的美国,也有很多明星初创公司干不下去了,选择卖身(别人卖身都算成功了,至少套现了)。连明星创业公司都如此艰难,你凭什么觉得自己能够做得好AI?

如今​AI的另一个主要问题就是盈利问题,谷歌之所以成功那是因为拥有全世界最大的搜索引擎,其盈利靠的就是巨额的广告收入。所以你的AI应用除了靠订阅盈利,还能靠什么?

​所以还是那句话,不要All in AI!如果真想做AI,请看我之前写的 说过多少遍不要All in AI!初创公司没有一个产生现金流的业务就搞AI无异于在裸泳

总之,做AI当然没问题,但不要All in,不然你承担不起损失。

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

史上最年轻菲尔兹奖得主Serre的经典作品:代数凝聚层Faisceaux algébriques cohérents

法国数学家让-皮埃尔·塞尔(Jean Pierre Serre)是迄今为止最年轻的菲尔兹奖得主,他获奖时年仅27岁,被国际数学领域誉为“在世最伟大”的数学家之一,他在代数拓扑学、多复变函数论、代数几何与数论方面取得了开创性的、历史性的巨大贡献。 Serre与被誉为代数几何的上帝的Grothendick是亲密无间的学术伙伴,他们两个的数学风格可以说是截然相反的,相较于Grothendick更喜欢构造宏大的理论,Serre更喜欢解决具体的问题。而两者的合作碰撞出了无数的火花,诞生了无数经典的理论。具体可见 明星崛起 - 宛如来自空无的召唤。而代数凝聚层(Faisceaux algébriques cohérents)这本书是Serre的经典著作之一,讲述的是层论方法在代数几何中的应用。本书原版是法语写的,后来被翻译成中英文版本。现在我将自己收藏已久的中英法三个版本,都分享出来给有需要的人,欢迎感兴趣的收藏收藏!PS:第一个附件为法语版,第二个为英语版,第三个为中文版。

代数几何教皇Grothendick经典著作:代数几何原理法语原版全系列(1)

熟知Grothendick都知道,他有代数几何三部曲:EGA、SGA、FGA。其中知名度最高的无疑是EGA和SGA,他们可以说是代数几何的圣经,是无数重要且知名概念和理论的源头。相较于SGA,EGA受众可能更大些,看的人也更多些。毕竟SGA只是讨论班,而EGA则相当于代数几何的百科词典。在上帖中,我已经分享了SGA法语原版全系列(链接:代数几何教皇Grothendick经典著作:代数几何讨论班法语原版全系列),EGA法语全系列相较于SGA在当年要好收集一些,但也不容易。在当时已经有中文翻译版了,还有英文版翻译,我都看过,最后觉得还是法语版最好,英文版次之。因为有些术语翻译成中文,真的不太好理解,见英语不好,读不懂英文数学教材怎么办?不过之后我还是会把中文翻译版和英文翻译版都发出来。接着我还发一发Grothendick的其他著作,包括收获与播种、伽罗华长征、一个纲领的提纲(Esquisse d'un Programme)等。EGA有四系列,为EGA 1-4,但总共分为8册书,EGA 3有两本,EGA 4有四本。由于文件较大,我分成两贴将这些东西发完。本贴先发EGA 1-3,需要下载三个压 ...

分析学大师Elias M. Stein的分析系列教材

分析学大师Elias M. Stein(曾是陶哲轩的老师),写了四本分析学系列教材,统称为普林斯顿分析学讲座(Princeton Lectures in Analysis)。他们分别是:I Fourier Analysis:An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces IV Functional Analysis: Introduction to Further Topics in Analysis当时集齐这四本书花了我不少时间,似乎这四本书知名度不一,我下的第一本是复分析教材Complex Analysis。现在我将这些好东西拿出来分享给有需要的人。PS:如果需要中译版的,目前只能找到《实分析》和《复分析》两本,链接:伊莱亚斯 M. 斯坦恩(Elias M. Stein)《复分析》与《实分析》教材

Grothendick经典同调代数文章:Some aspects of homological algebra

这是Grothendick著名的关于同调代数的文章Tôhoku paper的英文翻译版,原文是法语版,标题为Sur quelques points d'algèbre homologique。英文翻译为:Some aspects of homological algebra。该文章概述了很多同调代数的重要概念,其中基本都跟代数几何有联系,并且里面不少概念其实是Grothendick本人提出来的,如abelian categories。可以说这篇文章是同调代数的经典文章,在数学圈内也时常有人推荐看这篇文章,毕竟这可是祖师爷亲自从同调代数的基础概念一步步讲起,这对学同调代数或者代数几何的人都有很大裨益。我收藏这篇文章的时候都2021年了,现在拿出来推荐给大家!之后我还会把法语原版也发出来。

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。

望月新一关于abc猜想的天书证明:宇宙际Teichmüller理论

望月新一以及他的Inter-universal Teichmüller Theory(宇宙际Teichmüller理论)可以说是非常出名,相较于费马大定理证明的晦涩难懂,宇宙际Teichmüller理论才算是真正的天书,全世界没几个人能看得懂,就连大佬Faltings都看不懂。望月新一是Faltings的学生,Faltings以“暴力横推”的风格闻名,张寿武说过Faltings的风格就像直接开着推土机把山碾平了过去。并且Faltings看论文都是只看前沿(introduction)就能知道整篇论文的主要定理,甚至还能直接证出来。见望月新一与他天书般的论文,展现了纯数学与我们的距离可见Inter-universal Teichmüller Theory有多难懂,它涉及到代数几何一个高深的领域:远阿贝尔几何(anabelian geometry),顾名思义就是考虑平展基本群$\pi_{1}^{et}(X,x)$远离阿贝尔的部分,远阿贝尔几何源于Grothendick的一封入职信Esquisse d'un Programme,他于其中提出一个宏大的理论,然而最终他却没能将其实现。而望月新一可 ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。