数学数学·

Anti-homomorphism in Rings

发布时间:2024-08-20 17:46:28阅读量:63
学术文章
·
论文
转载请注明来源

ABSTRACT

In this chapter, the concept of anti-homomorphisms in Rings is studied and many results are established.

INTRODUCTION

The concept of anti–homomorphism in groups and rings is not found much in the literature. Authors like Jocobson Neal McCoy and Zariski and Samul have touched this concept in a lighter way. The reason is perhaps that the composition of two anti-homomorphisms is not an anti-homomorphism, but a homomorphism. This discouraged the mathematicians to move further. In 2006, G. Gopalakrishnamoorthy defined a new composition of two anti-homomorphisms so that the composition of two anti-homomorphisms with respect to the new composition is again an anti-homomorphism. In this paper we study the concept of anti-homomorphisms in Rings.

Definition. Let $R1$ and $R2$ be two Rings (not necessarily commutative). A map $f: R1\rightarrow R2$ is said to be an anti-homomorphism if

i) $f(x+y) = f(x) +f(y)$ and

ii) $f(xy) = f(y)\cdot f(x)$ for all $x, y\in R1$.

Definition. Let $f: R1\rightarrow R2$ be an anti-homomorphism of Rings.

(a) If $f$ is one-one, we say $f$ is an anti-monomorphism.

(b) If $f$ is onto, we say $f$ is an anti-epimorphism.

(c) If $f$ is both one-one and onto, we say $f$ is an anti-isomorphism.

(d) If $R1=R2$ and $f$ is onto, we say $f$ is an anti-endomorphism on $R1$.

(e) If $R1 = R2$ and $f$ is both one-one and onto, we say $f$ is an anti-automorphism on $R1$.

Property 1:

Let $f : X \rightarrow Y$ be a map. Let $A1, A2$ be subsets of $X$. Then

(i) $f (\varphi) = \varphi$

(ii) $A1 \subset A2 => f (A1) \subset f(A2) $

(iii) $f(A1\cup A2) = f(A1) \cup f(A2) $

(iv) $f(A1\cap A2) \subset f(A1) \cap f(A2) $

(v) $f(A1\ A2) \supseteq f(A1) \ f(A2)$

Property 2:

Let $f : X \rightarrow Y$ be a map. Let $B1, B2$ be subsets of $Y$. Then

(i) $f^{-1} (\phi)=\phi$

(ii) $B1 \subset B2 \Rightarrow f^{ -1} (B1) \subset f^{ -1} (B2) $

(iii) $f^{ -1} (B1\cup B2) = f ^{ -1} (B1)\cup f^{ -1} (B2) $

(iv) $f^{ -1} (B1\cap B2) = f ^{ -1} (B1)\cap f^{ -1} (B2) $

(v) $f^{ -1} (B1 \ B2) = f ^{ -1} (B1) -f ^{ -1} (B2) $

(vi) $f^{ -1} (Y- B1) = X -f^{ -1} (B1)$

(vii) $f^{ -1} (B1) = \phi \Rightarrow B1 \cap f(x) = \phi $

Theorem : Let $f : R1\rightarrow R2$ be an anti-homomophism of rings. Then the following hold

(i) $f(0) = 0$

(ii) $f(-a) = - f(a)$

(iii) $f(a^{k}) = [f(a)]^{k}$ for all $k \geq 1$, and $a \in R1$

Proof:

(i) $f(0) = f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0 $

(ii) $0 = f(0) = f(a + (-a)) 0 = f(a) + f(-a) \Rightarrow f(-a) = - f(a)$

(iii) $f(a^{2}) = f(a)\cdot f(a) = [f(a^{2})] $

Assume $f(a^{k-1} ) = [f(a)]^{k-1}$

$$\begin{align} f(a^{k} ) &= f(a^{k-1} \cdot a) \\ &= f(a) \cdot f(a^{k-1}) \\ &= f(a) \cdot [f(a)]^{k-1} \\ &= [f(a)]^{k} \end{align}$$.

Theorem : An anti-homomorphism $f : R1 \rightarrow R2$ is a homomorphism if and only if $f(R1)$ is a commutative subring of $R2$.

Proof: Let $f : R1 \rightarrow R2$ be an anti-homomorphism of rings. Assume $f(R1)$ is commutative subring of $R2$. Then for all $x,y \in R1 f(xy) = f(y)\cdot f(x) = f(x)\cdot f(y) $. Thus, $f(R1)$ is a commutative subring of $R2$ such that $f$ is a homomorphism.

Conversely, assume that $f$ is a homomorphism. Let $a,b \in f(R1)$ be any two elements. Then $a = f(x)$ for some $x\in R1 ,b = f(y)$ for some $y\in R1$.

Now

$$\begin{align} ab &= f(x) \cdot f(y) \\ &= f(xy) (\textrm{so f is a homomorphism}) \\ &= f(y) . f(x) (\textrm{so f is an anti-homomorphism}) \\ &= b . a \end{align} $$

Hence $f(R1)$ is a commutative subring of R2.

Theorem : Let $f : R1 \rightarrow R2$ be an anti-homomorphism of rings. Then

(i) $\textrm{Ker}f$ is a subring of $R1$.

(ii) $f(R1)$ is a subring of $R2$.

Proof:

(i) Since $R1$ is non-empty, $f(R1)$ is non-empty.

Let $a,b \in f (R1)$. Then a = f(x) for some $x\in R1, b = f(y)$ , and for some $y\in R1$.

Then

$$\begin{align} a-b &= f(x) – f(y)\\ &= f(x) + f(-y) \\ &= f(x-y) \in f(R1)  \end{align}$$

Also

$$\begin{align} ab &= f(x)\cdot f(y) \\ &= f(yx) \in f(R1) \end{align}$$

Thus $f(R1)$ is a subring of $R2$.

Theorem : Let $f : R1 \rightarrow R2$ be an anti-homomorphism of rings. For all $x, y \in R1 , f(x) = f(y)$ iff $x-y \in \textrm{ker }f$.

Theorem : Let $f : R1\rightarrow R2$ be an anti-homomophism of rings. Then $f$ is one-one iff $\textrm{ker }f = {0}$.


评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Vue3+Django实现保持登录状态

Request.session对象会自动生成一个cookie,该cookie名字默认为sessionoid,储存session的session_key值。当会话session过期后,该cookie将会自动消失。只有该cookie清空后,登录后的用户才能重新登录。 通过后端设置session的过期时间,时间到后,通过浏览器可以看到,cookie自动消失了。因此只需要设置,用户存在localStorage中的token值跟着cookie一起消失,就能够通过设置session的过期时间,来控制用户保持登录状态的时间,如七天免登录。 我们可能会认为其实可以根据cookie来控制登录状态,实际上想要在vue中操作cookie值是不容易。在JavaScript中,我们可以通过document.getElementId()之类的指令来控制cookie。但在vue中,使用document的指令很可能会得到空的返回值。因此,不能通过直接控制cookie的方法来实现控制登录状态。 因此,我们需要在后端多写一个接口,来检验token的有效性,从而控制用户的登录状态。 注意:cookie只会影响用户是否能够再 ...

在Nuxt 3中如何配置PrismJS和Autoloader插件?

在之前的文章Vue或Nuxt中如何渲染数学公式?中,我们讲解了如何在Nuxt.js中使用本地CDN渲染数学公式。通过本地CDN,我们可以很轻松的加载很多JavaScript库,且不用担心因此导致页面加载变慢。PrismJS是一个轻量的代码高亮JavaScript库,如果使用平常的方式配置PrismJS(参考如何使用Nuxt实现高亮代码块?),那么你想高亮的每一个语言几乎都需要引入一遍,比如说你想高亮Typescript,那么你需要添加import "prismjs/components/prism-typescript"。显然这很麻烦。然而,PrismJS有多个插件扩充了它的功能。Autoloader插件可以自动加载你需要的语言,让你不必再一个个的引入你需要高亮语言的文件。加载Autoloader插件最简单的方法是用CDN,在本文,我们将会讲解在Nuxt 3中,如何用加载Mathjax的同一种方法来配置PrismJS和它的autoloader插件。1. 首先从Github中下载PrismJS的源代码:https://github.com/PrismJS/prism/archive/re ...

Nginx安装后command not found

问题:我在我的Debian 12服务器上安装了nginx,安装过程完全按照官方文档Installing NGINX Open Source | NGINX Documentation。刚开始,一切正常,运行sudo nginx -v也正确返回了nginx的版本😇。但是最近我运行相同的命令,却给我返回command not found:sudo nginx sudo: nginx: command not found nginx bash: nginx: command not found无论是sudo nginx还是nginx都给我返回相同的结果😣。解决方案:想要解决这个问题,首先你需要确定nginx的安装路径。它可能安装在/usr/local/sbin 或 /usr/sbin中。一旦你找到你的nginx路径,比如/usr/local/sbin/nginx,直接运行sudo /usr/local/sbin/nginx -v nginx version: nginx/1.22.1就会输出nginx的版本,问题解决。如果你不想每次都输入nginx的完整路径,那么你必须根据下面的做法将ng ...

localStorage,sessionStorage和cookie的区别

我们可以将token和用户信息存进localStorage、sessionStorage或者cookies中,他们都是浏览器的数据存储方式。在使用浏览器的时候,打开开发者模式,点击应用程序,就能查看自己在该网站对应的LocalStorage、SessionStorage以及cookies中所存放的内容。LocalStorage、SessionStorage、Cookies的存储区别:LocalStorage没有生命周期,不会过期,需要“手动”删除。在浏览器发送请求时,LocalStorage中的数据不会被发送至后端服务器。LocalStorage所占用的空间较小。SessionStorage与LocalStorage类似,不同点在于SessionStorage有生命周期。关闭浏览器结束会话后,SessionStorage中的数据便会过期自动删除。SessionStorage所占用的空间较小。Cookies也是有生命周期的,它在过期后自动删除。同时,浏览器发送请求时,会同时将Cookies发送至后端服务器。Cookie所占用的空间较大。

pyttsx3运行错误

接上文Python实现语音朗读,运行示例代码时import pyttsx3 engine = pyttsx3.init() engine.say('开车不规范,亲人两行泪,I love China') engine.runAndWait()弹出以下错误:经过检查,pywin32等库都已经安装好了。尝试使用win32com库替代pyttsx3,结果仍然报错,报错内容为win32 api。之后又尝试了几种办法,仍然都是跟win32有关的报错。因为之前pip安装总是SSL报错,刚开始以为是SSL报错导致安装出错。但是修复SSL报错问题后(见Python pip安装SSL证书错误),该问题仍然没解决。最后经过了解,可能是pywin32版本过高所导致。一般需要将pywin32版本控制在305以下,可以使用225或者226这样的低版本。于是使用pip下载对应版本pip install pypiwin32 pip install pywin32 == 225然而,下载时发现已经没有225版本可以下载。因此另寻办法。最终,发现是pywin32安装的版本有问题,导致包虽然有了,但是却无法识别,导致出现N ...

大学毕业转行后的一点想法

最近成功把以前写的PDF格式的数学文章,几乎完美复刻到HTML网页上面,文章中的数学公式使用JS插件Mathjax渲染。之后会陆续更新到网站上,希望以后能让更多人无需下载就能看到,这也算给大学四年一个结尾。链接如下👇👇👇Note on arithmetic algebraic geometry, An introduction to different branches of mathematics, Note on perfectoid spaces, 代数几何简介​然后我目前只会把我以前留下的notes、introduction之类的弄成HTML这样网页的形式。至于我写的论文存arXiv上面就好了,谷歌搜也能搜到我的论文。目前来看,距离我论文完成也过去一年半了,并没有太多人对于推广perfect这一概念感兴趣。但值得一提的是,目前来看,我的工作更加受到老外的欣赏和认可,没有一个中国的Phd给我写过信,说看过我的文章。虽然关于perfect这一系列的工作没有全部完成,还可以继续深入耕耘,说不定还能多产出几篇论文吧,算下来我本科完成了4篇论文,有5篇未完成,总页数超过100页。但这一切 ...