·

对多个表中进行Select count(*)查询

发布时间:2024-08-18 18:33:20阅读量:195
专业文章
转载请注明来源

问题

如何从两个不同的表(称他们为tab1tab2)中进行select count(*)查询,从而得到如下结果:

Count_1   Count_2
123       456

我尝试过这个查询:

select count(*) Count_1 from schema.tab1 union all select count(*) Count_2 from schema.tab2

但最后只得到

Count_1
123
456


回答1

SELECT  (
        SELECT COUNT(*)
        FROM   tab1
        ) AS count1,
        (
        SELECT COUNT(*)
        FROM   tab2
        ) AS count2
FROM    dual

评论

  1. 为什么你要用dual?那是什么意思?
  2. 它是一个只有一条记录的伪表。在Oracle中你不能使用不带FROM的SELECT查询。

回答2

需要补充的是,想要在SQL Server中完成同样的事情,您只需要删除(上一条回答)查询的“FROM dual”部分。

回答3

只是因为一小点不一样:

SELECT 'table_1' AS table_name, COUNT(*) FROM table_1
UNION
SELECT 'table_2' AS table_name, COUNT(*) FROM table_2
UNION
SELECT 'table_3' AS table_name, COUNT(*) FROM table_3

它返回了转置的答案(每个表一行,而不是每个表一列),否则我认为没有太大区别。我认为在性能方面,它们应该是等效的。

回答4

我只在SQL Server上试过,但你可以这么做:

select (select count(*) from table1) as count1,
  (select count(*) from table2) as count2

在SQL Server中,我得到了你想要的结果。


回答5

另一个稍微有些不同的方法:

with t1_count as (select count(*) c1 from t1),
     t2_count as (select count(*) c2 from t2)
select c1,
       c2
from   t1_count,
       t2_count
/

select c1,
       c2
from   (select count(*) c1 from t1) t1_count,
       (select count(*) c2 from t2) t2_count
/



内容来源于StackOverflow, 遵循 CCBY-SA 4.0 许可协议进行翻译与使用。原文链接:Select count(*) from multiple tables

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

Tammo Tom Dieck代数拓扑教材

EMS出版的代数拓扑教材Algebraic Topology,作者是Tammo Tom Dieck。本教材相较于Hatcher的书,没有那么太多的插图,并且内容更加抽象。本书知识密度高,内容精炼简洁,没有过多的废话。很适合有一定代数基础,且喜欢直接切入主题,快速学习的人。对于还未入门的小白而言,这本书不太适合作为代数拓扑的入门教材。我高中的时候就在看这本教材,但总在一些地方无法彻底理解。但这本教材吸引我的地方,一是它的内容涵盖面够广,并且知识密度够高,能够让我短时间内掌握代数拓扑方面的基础知识;二是它的描述更加的抽象,并且语句简洁明了、容易理解,很符合我的口味(这也是我当时选择代数几何的原因)。关于本教材与其他代数拓扑教材更具体、更专业的对比,请看Algebraic Topology I: 对教材跟概念的一些论述。

2024-11-22凌晨:弦圈最近两周更新情况

在上篇弦圈11月10日上下更新计划:小金库、打赏等功能,我提到会更新网站多个功能。原本以为这些功能最多一周就能全部写完,结果当我真正开始写,才发现自己完全低估了这些功能实现的难度,以及所需要耗费的时间。而且由于我的完美主义倾向,导致我比原计划多开发了好几个功能,比如说编辑器插入公式、交易中心、收藏党最喜爱的收藏夹等。因为我想反正都大更新了,那干脆就更新得多一些,把以前埋的坑都填上。再然后支付功能比我想象中的要难得多,这不仅仅指代码难写,还包括支付宝的审核等问题,人事问题上也耗费了不少时间。在这里忍不住吐槽一下支付宝和微信支付,这国内两家巨头技术文档写的是真烂、真水。多少年了,支付宝支付SDK的demo示例还是Java、PHP,Python压根没写,只能自己摸索然后网上找到些零散的资料。微信支付先是需要微信认证强制每年收费300元,然后文档也是写得不清不楚。反正目前网站就暂时只支持支付宝吧,之后再把微信支付补上吧,因为真的被恶心到了。总之如今写了快两个星期了,这些功能终于要完成了,预计明后天就能上线测试。网站也完全没更新,也找不到人帮忙更新,只能先放着了。之后我会发一篇更新日志,更加详细 ...

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

将反向传递看成函子:强化学习的一个复合视角

这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。

弦圈11月10日上下更新计划:小金库、打赏等功能

这几天忙于写代码完善网站功能,不太有空更新文章和内容。因为弦圈没有借助任何建站工具和博客框架,是我自己前后端一起从零开始写的,因此开发得会比较慢,请谅解。。。目前计划上线功能首先就包括,前面弦圈更新日志:关于智力值和金币提到的小金库。获取金币的机制是:智力值存入银行(叫时空银行time bank?),然后根据日利率每天产生相应的金币。下图为测试画面其次为了让网站能够更好的运作下去,从而给大家提供更好的服务,我计划引入盈利功能。所谓盈利功能即是用户通过弦圈来获得收益的相关功能,包括打赏功能、接广告功能、接悬赏功能。这些功能主要是为了鼓励大家为社区做贡献,并且让需要得到帮助的人更容易获得帮助(毕竟大佬们忙得很,不会轻易帮助你解决问题)。具体规则暂定如下:想要让弦圈的用户能赚钱,那弦圈必须自己先能赚到钱,目前我计划引入弦圈广告和用户交易中心。至于弦圈广告,我打算采用信息流广告、侧边栏广告、文章内嵌广告,拒绝弹窗之类遮蔽视线的广告,因此不会影响用户体验。最后我还得把之前留的坑——创作中心给填上,就是一个给创作者的方便管理内容、查看数据的模块。测试画面如下:尽情期待😇

一个关于定义域光滑不变量的问题

我的提问:定理 22.3(定义域的光滑不变量)令$U \subset\mathbb{R}^n$为一个开子集,$S \subset\mathbb{R}^n$为一个任意子集,并且$f : U \rightarrow S$是一个微分同胚。那么$S$在$\mathbb{R}^n$中是开集。我无法理解为何集合$S$在$\mathbb{R}^n$中并不是自动开的。映射$f$是一个微分同胚,这意味着它在两个方向都是连续的,所以$S$是开的。回答:首先你所知道的是$U$中的开集$V$满足:$f(V)$在$S$中开,不是$f(V)$在$\mathbb{R}^n$中开。所以$f(U)=S$是在$S$中开。那个推断是说接着$f(U)=S$自动在$\mathbb R^n$中开,这是不一样的并且不是自动的。它需要证明。PS:这里说的是拓扑学中关于开集的一个重要盲点,即开集是相对的。尤其是考虑某个拓扑空间中的子集,要弄清楚究竟是在子集内开,还是在全空间内开。

Grothendieck经典著作:代数几何原理EGA 1(1971第二版)法语+英译

在前面几贴中,我已经分别分享了Grothendieck的代数几何三部曲EGA、SGA、FGA,链接如下:代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列(1)代数几何教皇Grothendieck经典著作:代数几何讨论班SGA法语原版全系列代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版但其实EGA 1还有1971年的第二版,Grothendieck在EGA 1第二版中更新了一些内容,因此一些概念定义会与第一版中有出入。原本我也是不太知道EGA竟然还会有第二版,直到后来有次看文献时,发现作者引用了EGA 1(1971)才知道有这一版本。对比EGA 1第一版跟第二版,感觉第二版要比第一版更好读一些,似乎思路行文更清晰,也更好理解。并且值得开心的是,EGA 1第二版有完整英译,现在我全都分享出来。