·

What is base change map $U\times_{X}X\rightarrow U\times_{Y}Y$?

Published at 2024-06-05 16:59:59Viewed 269 times
Academic article
Please reprint with source link

Let $X,Y$ be schemes. Let $f:X\rightarrow Y$, $g:Y\rightarrow Y$ be morphisms of schemes. Then we can form the base change

\begin{CD} X\times_{f,Y,g} Y @>>> Y\\ @VVV @VV{g}V \\X @>{f}>> Y \end{CD}

Therefore, for any morphism $U\rightarrow X$, we can form the fibre product $U\times_{Y,g} Y$ as follows:

\begin{CD}U\times_{Y,g}Y @>>> X\times_{f,Y,g} Y @>>> Y\\ @VVV @VVV @VV{g}V \\ U @>>> X @>{f}>> Y \end{CD}


Let $X\rightarrow X$ be the identity morphism. Then we have an induced map $X\rightarrow X\times_{f,Y,g} Y$ by the universal property of $X\times_{f,Y,g} Y$. Then the base change

\begin{CD} U\times_{X,f} X @>>> X\\ @VVV @VVV \\ U\times_{Y,g}Y @>>> X\times_{f,Y,g} Y \end{CD}

gives us the desired base change map $U\times_{X}X\rightarrow U\times_{Y}Y$.

Comments

There is no comment, let's add the first one.

弦圈热门内容

Grothendick经典同调代数文章:Some aspects of homological algebra

这是Grothendick著名的关于同调代数的文章Tôhoku paper的英文翻译版,原文是法语版,标题为Sur quelques points d'algèbre homologique。英文翻译为:Some aspects of homological algebra。该文章概述了很多同调代数的重要概念,其中基本都跟代数几何有联系,并且里面不少概念其实是Grothendick本人提出来的,如abelian categories。可以说这篇文章是同调代数的经典文章,在数学圈内也时常有人推荐看这篇文章,毕竟这可是祖师爷亲自从同调代数的基础概念一步步讲起,这对学同调代数或者代数几何的人都有很大裨益。我收藏这篇文章的时候都2021年了,现在拿出来推荐给大家!之后我还会把法语原版也发出来。

Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved