·

弦圈编辑器功能介绍及使用技巧

发布时间:2024-10-21 17:01:39阅读量:20
普通文章
转载请注明来源

一般编辑器分为Markdown编辑器和富文本编辑器两种,而弦圈目前所用编辑器为富文本编辑器,暂不支持Markdown编辑器。个人认为富文本编辑器对新手更为友好。

富文本编辑器用法跟Word大致相同,基本功能不再赘述。在本文中,我们将介绍一下弦圈编写文本所用编辑器的一些特殊功能。这些功能包括插入词条添加参考文献引用文献

插入词条

插入词条指的是在文本中插入一条圈子百科中词条的链接。主要用于文本中一些难懂且解释需要篇幅的术语。在编辑器中直接点击下图按钮即可进行输入。

点击后会弹出对话框,根据提示把带星号的项填好,点击下面的“插入”按钮即可。

插入词条后,编辑器中结果如下:

发布文章后的效果如下,点击该链接会弹出该术语在圈子百科中的相应解释,非常方便查找相关术语的意思,不用多个页面互相切换:

令$(\Gamma,+,\leq)$为一个有序阿贝尔群

添加参考文献

添加参考文献指的是在文章的中插入论文格式的参考文献。该功能用于帮助用户生成美化过的、条理性强的、符合论文格式要求的参考文献。在编辑器中直接点击下图按钮即可进行输入。

点击后会弹出输入框如下图,根据提示将带星号的项填好,然后点击下方蓝色“确定”按钮即可。

添加参考文献后,编译器的效果如下:

发布文章后生成的效果如下:

  1. S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.

引用文献

当你在文章中添加完参考文献后,就可以使用“引用文献”进行引用了。在编辑器中直接点击下图按钮即可进行输入。

点击后会弹出对话框,根据提示将带红色星号的项填好,然后点击下方蓝色“确定”按钮即可。

引用文献后,编辑器中的效果如下:

发布文章后生成的效果如下,引用为一个粉色链接,点击链接后页面会跳到相应的参考书目上:

[BGR, 定理1]

至此关于弦圈编译器的功能介绍完毕,祝您使用愉快!

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

怀尔斯的费马大定理证明

费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...

把加法与乘法结构拆掉再复原?望月新一如何引发代数几何变革

据《朝日新闻》,望月新一关于ABC猜想的论文可能将要发表,审核它的期刊是《数理解析研究所公刊》(PRIMS)。媒体对此的报道大抵聚焦在两点上:一是这个期刊就是他的工作单位主办的,一是这个论文几乎无人能懂。作为一个数学研究者,我个人并不担心望月新一的利益冲突问题,不但因为数学界有一套相当完备的系统用以避免利益冲突,在选定编辑和审稿人时有良好的避嫌标准,更重要的是:他没有动机。他已经功成名就,不需要什么文章。数学这种东西,对就对,错就错,不存在编数据或者实验造假,一切细节都在文章里。要是错了,无论强行发表在什么期刊上,也终有一天会被发现,而一发现就无可抵赖,只能重新修补。但是他的理论绝不仅仅是一个“几乎无人能懂”的怪物而已。它所试图解决的根本数学问题,它背后的当代数学界的面貌,它反映出的做数学研究是怎样的状态,这里面还有太多的故事并不是、也不应该是只有几个人能懂。甚至也许可以说,这些故事能让人直观地感受到:现代数学是什么。破题望月新一的研究领域,是所谓的“远阿贝尔几何学”。如果一句话解释这个领域的话,我只能这样写:有理数的绝对伽罗华群,以至任意代数簇的平展基本群,它们“远离阿贝尔”的部分, ...

Algebraic Topology I: 对教材跟概念的一些论述

关键词:Homotopy, Homology, Groupoid, Foundamental Group, Van Kampen Theorem, Covering Space, Covering Projection, Fibration with unique path lifting, Cofibration.Tammo tom Dieck 在他的代数拓扑教材中写了非常漂亮的前言,在点出代数拓扑精髓的同时还包含一些形而上学的哲思,并且简略地介绍了代数拓扑里面的两个核心词汇,同伦(homotopy) 跟同调 (homology)。我简要地部分翻译如下:代数拓扑是连续数学跟离散数学交相辉映的学科。在连续数学里面,我们用拓扑空间和连续映射这样普遍的形式语言将其公理化。而离散数学则是被我们用来表达代数和组合概念的。在数学语言中,我们用实数来概念化连续形式,但我们建立实数时却是要用到整数。下面举个例子,我们直觉地认为时间是一个连续的没有间断的流动过程,是由一系列不停止的瞬间后继构成的。但在实践中,我们却使用被定义为有周期性的离散模型工具跟自然过程。同样地,我们意识到空间是一个连续体,但我们 ...

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫 ...

英语不好,读不懂英文数学教材怎么办?

问题:最近我得到一本英文 GTM1 的 PDF。起初我截图发到微信上,再通过机翻来阅读。后来觉得麻烦,就打印下来。结果它马上给我一个下马威。第三节开头给了一个定义,然后就出现了一个长达三行半的复杂句子,我辛辛苦苦把每个不认识的词都标出来,但是除了开头的「定义 3.1 是不完全的」,后面我就不知道它说的是什么了。而且我发现书里面有很多很多我不认识的词,一个一个查只怕一年也读不完。经常在知乎看到「数学书是所有英文教材里文字最好懂的」这样的评论,大概我的英语水平太差了吧。(我的英语水平:我现在初三,120分的试卷一般考110~112)所以现在我应该怎么办?怎样比较快速地提高英语水平使得我能够看懂数学书。(补充一句:我的数学水平对看书不是很成问题)我的回答:看不懂英文怎么办?那就老老实实遇到不懂的单词,就查一下什么意思,然后拿个笔记本记下来,这样还能方便偶尔复习巩固记忆。每次遇到不懂的单词,就这样操作,时间长了有感觉了,就可以不记笔记了,遇到不懂的查,脑子过一遍,继续看,代入到语境中去理解。你是初三,真巧我看人生中第一本数学英文教材的时候也是初三,当时刚刚中考完,我还依稀记得当时看的教材是泛函 ...

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenk ...