本圈子主要分享一些简单且有趣的数学题,用于娱乐目的以及放松头脑。
请问转盘中未填的数字是多少呢?
暂无评论,来发布第一条评论吧!
在上帖中我分享了Tammo Tom Dieck代数拓扑教材,并对比了Tammo Tom Dieck与Hatcher的教材有啥区别。现在我将Hatcher的代数拓扑教材分享出来,给有需要的人。Hatcher的教材相比于Tom Dieck的,图文并茂,有更精美丰富的插图,能让读者更加直观的理解。这适合入门代数拓扑的小白,或者是喜欢几何直观的人。
费马大定理的证明可以说是算术几何的一个重要里程碑,当年怀尔斯虽然很小的时候就被该问题所吸引,从而选择做一个数学家。但作为一个这么多年都无人能破解的难题,怀尔斯也是兜兜转转,他也没一开始就打算攻克这个猜想。据说,是代数几何取得突破性进展之后,他才觉得是时候攻克费马大定理了。最后他成功证明了谷山-志村猜想,从而证明了费马大定理。可以说怀尔斯能证明费马大定理,是刚好生在一个合适的时代,并站在了巨人的肩膀上,从前人手中接过火炬。怀尔斯关于费马大定理的证明,就是这篇论文Modular elliptic curves and Fermat’s Last Theorem。该论文非常晦涩难懂,没多少人能看得懂,可以说能彻底看懂费马大定理证明的人,都是圈内大佬。论文中涉及的知识面很广,包括椭圆曲线、模形式、伽罗华表示论、代数数论、类域论、群概形等等,想要理解费马大定理就得先理解前面这些理论。不过虽然我们看不懂,但该证明还是非常具有收藏价值的,看不懂也能看,也能欣赏嘛。并且对于做算术几何的人来说,可以用这篇论文来指导自己的学习和研究。Peter Scholze当年不也一上来就看费尔马大定理的证明,虽然un ...
这篇文章是数学家与计算机科学家合作写的,将范畴论应用于人工智能的强化学习。本文表示,强化学习算法与强化学习算法的复合,还是一个强化学习算法,因而所有强化学习算法构成一个范畴$\textrm{Learn}$。然后在$\textrm{Learn}$里考虑神经网络,并证明在一般情况下,梯度下降也是复合的。如果对纯数学理论,在计算机或者AI有什么应用感兴趣的人,可以看看。我当时下这篇文章,也是好奇代数领域在AI方面有啥应用,其实当时已经知道有个叫热带几何(Tropical Geometry)的领域,就是代数几何在计算机的应用。因为当时AI就很火,但AI可解释性需要很多数学来解决,他们解决不了,所以我留着这篇文章也是打算之后写篇类似的AI应用的文章。
本教材为拓扑学的基础入门教材,作者是Dugundji。本书从最基本的集合概念开始讲起,从集合论延伸至拓扑空间。最后也会涉及一些分析学和代数拓扑。这本书的内容十分完备且齐全,有时候看文献遇到一些比较罕见的术语(包括一些谷歌搜不到的),能在本书中找到。因此本书不仅仅是一本入门教材,还是一本拓扑学的供学者查阅的词典。此书我已收藏数年,如今分享出来给有需要的人。我上传资源尽量只上传可复制的pdf或djvu版,因为不可复制有些时候真的是硬伤。PS:因为文件大了一些,因此用压缩包压缩了一下大小,直接解压即可。
提问:求解:$$\int \frac {dx}{\sqrt{1-x^2}+\sqrt{x^2+1}}=\int \frac{\sqrt{1-x^2}-\sqrt{x^2+1}}{-2x^2}dx=-\frac{1}{2}\left(\int \frac{\sqrt{1-x^2}}{x^2}dx-\int\frac{\sqrt{x^2+1}}{x^2}dx\right)$$在第一个积分式中令$x=\sin\theta$,$dx=\cos\theta d\theta$在第二个积分式中令$x=\sinh \varphi$,$dx=\cosh\varphi d\varphi$$$-\frac{1}{2}\left(\int \frac{\sqrt{1-\sin^2\theta}}{\sin^2\theta}\cos\theta d\theta-\int\frac{\sqrt{\sinh^2\varphi+1}}{\sinh^2\varphi}\cosh\varphi d\varphi\right)=-\frac{1}{2}\left(\int \frac{\cos^2\theta}{\sin^ ...
在前面几贴中,我已经分别分享了Grothendieck的代数几何三部曲EGA、SGA、FGA,链接如下:代数几何教皇Grothendieck经典著作:代数几何原理EGA法语原版全系列(1)代数几何教皇Grothendieck经典著作:代数几何讨论班SGA法语原版全系列代数几何教皇Grothendieck经典著作:代数几何基础FGA法语原版+英文译版但其实EGA 1还有1971年的第二版,Grothendieck在EGA 1第二版中更新了一些内容,因此一些概念定义会与第一版中有出入。原本我也是不太知道EGA竟然还会有第二版,直到后来有次看文献时,发现作者引用了EGA 1(1971)才知道有这一版本。对比EGA 1第一版跟第二版,感觉第二版要比第一版更好读一些,似乎思路行文更清晰,也更好理解。并且值得开心的是,EGA 1第二版有完整英译,现在我全都分享出来。
我的提问:定理 22.3(定义域的光滑不变量)令$U \subset\mathbb{R}^n$为一个开子集,$S \subset\mathbb{R}^n$为一个任意子集,并且$f : U \rightarrow S$是一个微分同胚。那么$S$在$\mathbb{R}^n$中是开集。我无法理解为何集合$S$在$\mathbb{R}^n$中并不是自动开的。映射$f$是一个微分同胚,这意味着它在两个方向都是连续的,所以$S$是开的。回答:首先你所知道的是$U$中的开集$V$满足:$f(V)$在$S$中开,不是$f(V)$在$\mathbb{R}^n$中开。所以$f(U)=S$是在$S$中开。那个推断是说接着$f(U)=S$自动在$\mathbb R^n$中开,这是不一样的并且不是自动的。它需要证明。PS:这里说的是拓扑学中关于开集的一个重要盲点,即开集是相对的。尤其是考虑某个拓扑空间中的子集,要弄清楚究竟是在子集内开,还是在全空间内开。
这几天忙于写代码完善网站功能,不太有空更新文章和内容。因为弦圈没有借助任何建站工具和博客框架,是我自己前后端一起从零开始写的,因此开发得会比较慢,请谅解。。。目前计划上线功能首先就包括,前面弦圈更新日志:关于智力值和金币提到的小金库。获取金币的机制是:智力值存入银行(叫时空银行time bank?),然后根据日利率每天产生相应的金币。下图为测试画面其次为了让网站能够更好的运作下去,从而给大家提供更好的服务,我计划引入盈利功能。所谓盈利功能即是用户通过弦圈来获得收益的相关功能,包括打赏功能、接广告功能、接悬赏功能。这些功能主要是为了鼓励大家为社区做贡献,并且让需要得到帮助的人更容易获得帮助(毕竟大佬们忙得很,不会轻易帮助你解决问题)。具体规则暂定如下:想要让弦圈的用户能赚钱,那弦圈必须自己先能赚到钱,目前我计划引入弦圈广告和用户交易中心。至于弦圈广告,我打算采用信息流广告、侧边栏广告、文章内嵌广告,拒绝弹窗之类遮蔽视线的广告,因此不会影响用户体验。最后我还得把之前留的坑——创作中心给填上,就是一个给创作者的方便管理内容、查看数据的模块。测试画面如下:尽情期待😇
OpenStax是一个免费课本网站,其出版的微积分系列教材分为三本。该微积分教材内容浅显易懂,并且图文并茂,带有彩色文字和彩图,书本整体的颜值很高。这跟国内的某些教材实在是没得比,关于国内外教材的对比可见我之前的文章为什么说外国教材好?国外教材与国内教材的区别。如果英文还算过关的话(其实数学英文并不难,见英语不好,读不懂英文数学教材怎么办?),那么看这种高质量教材学习微积分一定能让你受益匪浅!话不多说,现在就将他们分享出来。PS:由于单个pdf文件太大超过了附件大小限制,因此分成五个压缩包分卷上传。
续上贴代数几何教皇Grothendieck经典著作:代数几何原理法语原版全系列(1),继续发最后的EGA 4。EGA 4分为a、b、c、d四册书,篇幅也比EGA 1-3要大。所以文件也会比较大,这次我分为五个压缩包分卷下载(属实抱歉服务器原因,尽量上传和下载小附件)。
这是朋友推荐给我的国外健身教程。本书非常专业,配有很多解剖图来给你讲解每个动作。然而书中的英文很多都是生物学的术语,因此阅读难度较高,并且生物学的英文冗长而无规律,有些单词连老外都觉得难。此书适合想要学习专业健身知识的人,当然感兴趣的也能瞧瞧,毕竟这种英文教程应该很少有,反正我没见过。
本文是我大学时(忘记了是大几)写的算术几何的总结,同时也算是个科普文,用尽量简单的语言来尽可能的让该领域外的人了解。而之所以写这篇文章,原因也很离谱,其实是我为了完成大学里那个叫做“创新研讨课”的大作业写的。因为我非常不喜欢这个课,就一水课老是说些对我们没帮助的东西,哪怕是讲些学术的东西我也完全没兴趣。当时最后结课时布置了个大作业,让我们写写自己对本专业了解多少(记不清了),然后我直接写了个代数几何“以示抗议”😄。PS:其实本文之前我已经发过了代数几何简介,这次我把用latex写的pdf原版也发出来,分享给感兴趣的人。