抽象代数 (数学)

抽象代数(又叫做近世代数)是数学的一个分支,其专注于代数结构的研究。它主要研究代数的抽象面。换句话说,抽象代数并不关心代数结构里面具体是什么,但关心这个代数结构是否等价于另一个代数结构。

相关内容

Proof of the isomorphism $\textrm{Hom}_{A-mod}(\textrm{Hom}_{A-mod}(A,A),A)\cong A$ for any ring $A$

Let $A$ be a commutative ring with identity. Then we have an isomorphism $$A \rightarrow \textrm{Hom}_{A-mod}(A,A), a \mapsto (x \mapsto ax)$$, whose inverse is $$\textrm{Hom}_{A-mod}(A,A) \rightarrow A, \varphi \mapsto \varphi(1).$$Then applying this isomorphism, we get $$\textrm{Hom}_{A-mod}( \textrm{Hom}_{A-mod}(A,A) ,A) \cong \textrm{Hom}_{A-mod}(A,A) \cong A.$$
2024-06-04 01:08:24

如何构建一个比复数域$\mathbb{C}$还要大的域?

本文我们探讨这个问题:是否存在一种扩张复数域$\mathbb{C}$的方法,使得$\mathbb{C} \subset\mathbb{C}[a]$?或者$\mathbb{C}$是所有域扩张的终点?下面围绕这个问题,我们将提供两种扩张复数域$\mathbb{C}$的方法。方法1:$\mathbb{C}$的笛卡儿积$$P = {\Bbb C}\times{\Bbb C}\times\cdots$$并不是一个域,因为它有零因子:$$(0,1,0,1,\cdots)(1,0,1,0\cdots)=(0,0,0,0,\cdots)。$$但是将零因子商掉,就能得到一个域。令$\mathcal U$为$\Bbb N$上的一个nonprincipal ultrafilter。我们定义$$(a_1,a_2,\cdots)\sim(b_1,b_2,\cdots)$$当$$\{n\in\Bbb N\,\vert\, a_n=b_n\}\in\mathcal U。$$然后商$F = P/\sim$就是一个严格比$\mathbb{C}$大的域,我们称这个域为超积(英语:ultraproduct)。并且嵌入映射$\Bbb C\longrightarrow F$是显然的。方法2:给定任意一个域,我们总能构造更大的域出来。如果给定的域不是代数封闭的,我们给adjoin新的多项式的根,否则我们可以adjoin超越元素(这等价于构建一个有理函数域)。事实上,每一个域扩张都是一个纯超越扩张的代数扩张。(因为$\Bbb C$是代数封闭的,它没有代数扩张,因此没有有限域扩张。)特别的,$\Bbb C(T)$(复系数变量$T$的有理函数域)在集合论包含关系上,比$\Bbb C$大。然而,它的代数闭包跟$\Bbb C$有着相同的基数,因此它抽象意义上同构于$\Bbb C$。这意味着存在一种将$\Bbb C(T)$嵌入到$\Bbb C$里的方法。如果我们想要在基数意义上构建更大的域,我们可以构建$\kappa$多个变量的复系数有理函数域,其中$\kappa$是一个比连续统$\mathfrak{c}=|\mathbb{C}|$更大的基数。这显然比$\Bbb C$更大!注意到$\mathbb{C}[T]$不存在既是域,又严格包含于$\Bbb C$的子环。因为如果它存在,它就会包含某个非常数$f(T)$,从而包含非多项式元素$f(T)^{−1}$,该元素不可能在$\mathbb{C}[T]$里。同时注意到不同特征值的域是不相容的:不同特征值的域永远不可能包含在同一个域里面。因此,不仅不存在所有域的共同域扩张(一个域能包含所有的域),并且“所有域的类”在不同且互斥的方向上延申(每个素数对应一个,零对应一个)。
2024-10-15 19:04:35

范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的

我的提问:众所周知,范畴中对象之间的态射都是保持结构的。但是在一本教材中,我发现它说态射一般是保持结构的。这是否意味着存在不保持结构的态射?回答1:一个范畴不需要非得由带有某些额外结构的集合与保持这个结构的映射构成。不是这种类型的范畴的例子有:给定任意一个群$G$,我们可以构造一个范畴,它由一个对象$*$和每个$g\in G$的一个态射$\varphi_g\colon *\to *$组成。这里,态射的复合通过群运算来定义,并且$\operatorname{id}_* = \varphi_{e}$对于单位元$e\in G$。给定一个偏序集$(P,\le)$,我们可以构造一个范畴,它由对象集$P$和每个满足$x\le y$的$x,y\in P$有且仅有一个的态射$x\to y$组成。拓扑空间的同伦范畴,它的对象都是拓扑空间,每个态射$X\to Y$是一个连续映射$f\colon X\to Y$的同伦群$[f]$。回答2:我认为问题出在这里众所周知,范畴中对象之间的态射都是保持结构的。事实并非如此。范畴这个概念推广了“带有结构的集合和保持结构的函数”,例如群和同态,或者拓扑空间和连续映射。但是一般性的程度是极端的:范畴的对象甚至不需要是集合,然后范畴的态射不需要是函数。比如,每一个幺半群可以看成是一个单对象的范畴,其中幺半群里的元素都是从单个对象到自身的态射。在这个情况下,“对象”只是一个占位符——它没有“结构”的概念——并且态射无疑都不是函数(一般来说)。“看起来像”带结构的集合与保持结构的态射的范畴被称作具体范畴。意思是范畴$\mathcal{C}$装备了一个忠实函子$U : \mathcal{C} \to \mathbf{Set}$。$\mathcal{C}$的一个对象$A$可以看成拥有一个“支集”('underlying set')$U(A)$,并且一个态射$f : A \to B$可以看成拥有一个“支函数”('underlying function')$U(f) : U(A) \to U(B)$。然而具体范畴仍然比带结构的集合与保持结构的态射更一般。毕竟实际上并没有提到任何关于结构的东西。本问题于2019年2月19号提问于MathStackExchange,当时我正在读高中,因为得兼顾高考,我并没有多少时间来研究数学,所以当时的数学水平一直不让自己满意,但也没办法。
2024-10-19 10:21:55

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \Bbb N_0$使得$y\le x^n\in H $。但是$H$是凸的,且有$\{1,x^n\}\subset H$和$1\le y\le x^n$,因此$y\in H$。(ii). 如果$1>z\in \Gamma$,然后有$1<z^{-1}$,因此$z^{-1}\in H$由(i),因此$z\in H$。所以$H=\Gamma$。因此$\Gamma$唯一的凸子群是$\Gamma$和$\{1\}$。附录。假设$\Gamma$为阿贝尔的是不必要的。非阿贝尔有序群是存在的。但是通过初等的方法(但不简便),我们可以证明如果$\Gamma$是一个满足阿基米德性质的有序群,则存在一个从$\Gamma$到加法实数子群的有序群同构。这表明$\Gamma$是阿贝尔的。
2024-10-18 16:31:20

为什么无限求和需要被有意义的?

我的提问:例如单位分解(partition of unity)中的求和以及抽象代数中的多项式表达式。回答:拥有无限多项的求和(或者说更加正式的“级数”)需要一些额外的条件来保证他们“表现良好”("well behaved")。否则你可能得到像以下这样的悖论:$$\begin{align} &S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S = 2 + 2 + 2 + \dots \\ &\Rightarrow 2S = (1+1) + (1+1) + (1+1) + \dots \\ &\Rightarrow 2S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S=S \\ &\Rightarrow S = 0 \end{align}$$一般地,额外的条件包含,要求除了有限数量的项都为$0$(数学简称中的“几乎所有”)或者收敛条件来确保求和有一个极限值。本问题问于2020年1月22号,当时我在读高三,提问的水平非常差😅,跟Peter Scholze这种高中就懂谱序列的没得比🙃。
2024-10-25 18:15:49

学代数几何需要懂得什么别的数学分支?

原本我以为微分几何跟代数几何仅仅是数学两个有关联的分支,结果是我之前肤浅了。随着对代数几何深入的学习了解,我发现代数几何跟微分几何也有很深的联系。因此我完全可以说微分流形的理论是深入学习代数几何的necessity,或许你懂抽象代数、交换代数,甚至同调代数,但是若你不懂一些manifold的理论,你完全没有机会去学习étale cohomology、Hodge theory等代数几何更深层次的理论。当然想要学习代数几何最高深、最先进的部分,仅仅懂abstract algebra、homological algebra、manifold是完全不够的。以我自己为例,我的方向是算术几何,这意味着你还需要懂elliptic curve、modular forms、$\ell$-adic representation、algebraic topology等更深层次的知识。还没完,你觉得你所学的东西就真的在研究的过程中用得上吗?在看书的过程中,你还得不停地看文献,就像定制一台机器一样定制自己所需要学习的知识,这样才能保证自己学到有用的东西,否则就是浪费时间,人的脑容量是有限的,用不上的东西时间长了就会忘记。很多人想做数学研究,结果却把大量的时间浪费在无谓的学习上,其实我更加提倡边做边学的做法,先找到个问题,然后尝试去做它,在做的过程中不断学习自己所需要的知识,这样效率是不是高很多呢。但说这么多都没用,很多人本身没有这么强烈的motivation,动机是前提,连最基本的动机都没有,谈再多的方法都没用。————————————————————本文原发布于2020年10月14日
2024-10-02 13:09:29

抽象代数中如何执行归纳法?

我的提问:我无法理解在这个证明中,归纳法这个步骤是如何进行的。有人能帮帮我吗?感谢!回答:令$n = deg B$。他们通过对$m = deg A$做归纳法来证明那个陈述。基本情况是$m < n$。如果$m \geq n$,然后他们找到另一个多项式$A'$,在这种情况下,$A' = A - B a_m X^{m - n}$,并且它有比$m$更小的阶数。所以我们可以通过归纳假设来处理它。$A′$的商和余数表达式是用于找到$A$的。我想有两件事你可能会觉得困扰,以及为什么你没有认出归纳法。首先,基本情况不仅仅是一种情况,而是一堆情况。这里请注意,这是基本的:证明中的归纳步骤仅适用于$m\geq n$。同时注意,在这种情况下,证明$m=1$的工作量并不比证明$m<n$小:对于所有这些情况,这都是一行证明。你可能会觉得困扰的第二件事是,我们不仅对$m-1$使用归纳假设,对任何阶数严格小于$m$的多项式也使用归纳假设。这被称为完全归纳法或强归纳法:在归纳步骤中,你假设的是,命题不多于$m-1$时都是真的,而不仅仅是$m-1$。这在维基百科的“归纳法”页面上得到了很好的解释。
2024-10-25 17:58:33

素数在整数整环中还是素的吗?

我的提问:一个整环$R$中的元素$p$是素的,如果$p$不是零或者一个单元,并且$p|ab$意味着$p|a$或者$p|b$(等价的$ab\in Rp$意味着$a \in Rp$或者$b\in Rp$)。一个整环$R$的元素$q$是不可约的,当$q$不是零或者一个单元,并且$q = ab$意味着$a$或$b$是一个单元。那么素数在整数整环中是素的吗?然后素数都是不可约的吗?回答1:这两个问题的都是对的。根据基础数论的事实,$\pm 1$是唯一可逆的整数,除$\pm 1$以外的整数可以唯一地表示为不同素数的乘积加上$\pm$,每个素数的幂都是正整数,这两个结果都很容易得到。回答2:素数在整数整环中既是素的,也是不可约的。根据定义,它们就是不可约的。为了证明它们是素的,请回顾一下欧几里得算法,该算法用于找到两个整数的GCD(并同时证明任意两个整数都有一个在等价意义下唯一的GCD,其中并不涉及素数的分解)。根据欧几里德算法可以得出,如果$d=\gcd(a,b)$对两个整数$a,b\in\mathbb Z$,则存在整数$u,v\in\mathbb Z$使得$d=ua+vb$。(贝祖特性。)现在,想象$p$是普通意义上的一个质数,意味着它是不可约的。假设$p|ab$,然后令$d=\gcd(p,a)$,$d=up+va$。因为$d|p$,(从不可约性)可以得出,要么$d$是单元,要么$d$等价于$p$,因此我们能将$d,u,v$与一个单元相乘,将其缩减到到$d=1$或者$d=p$的情况。如果$d=1$,那么$1=up+va$,即$b=upb+vab$并且右侧可被$p$整除,所以$p|b$。如果$d=p$,其中$d=\gcd(p,a)|a$,于是我们有$p|a$。在一个一般的整环$R$中,素就意味着不可约。相反的蕴含关系是有效的每当$R$是一个欧几里得整环(即它在某种意义上允许欧几里德算法),或者如果它是一个主理想整环(即每个理想都是主的——由单个元素生成),或者它是一个贝祖整环(即每两个主理想之和是一个主理想)——证明与$\mathbb{Z}$的情形是相同的。原文地址:Are the prime numbers prime in the domain of integers?
2024-11-28 22:12:22