任意一个范畴之间的本质满射都是一个满态射吗?
This person is lazy, nothing was left behind...
我的提问:令$\cal{C},\cal{D}$为范畴(或者栈)。令$F:\cal{C}\rightarrow\cal{D}$是一个本质满射的函子,即在对象同构类上满射。然后$F$是小范畴(或者栈)范畴中的一个满态射吗?回答:不是。例如,任何一个对象的范畴之间的函子是本质满射的,但是如果$M_1, M_2$是两个非零幺半群,那么一个直和项的包含映射$M_1 \to M_1 \oplus M_2$,看成是两个单对象范畴间的一个函子,不是一个范畴的满态射。不过记住,“小范畴范畴中的满态射”由于多种原因,在任何特定应用中,都显然不是“正确”的概念。它抛弃了自然变换,所以你忽略了这样一个事实,即你其中在2-范畴里操作;并且在任何特定情况下,你可能需要各种“满态射”的概念。
数学学习记录:重回同调代数之深夜有感而发
This person is lazy, nothing was left behind...
学了几天的数学分析实在不想学了,因为太乏味了,反正自己很多都已经学过了,以后需要再补吧,又或者说一时心血来潮的时候再看。今天我终于重回同调代数,我现在还记得临近高考的那段时间里我一直在专攻同调代数,那也是我同调代数飞速进步的时期,因为之前我一直觉得同调代数好难,非常难啃,概念太过抽象。而现在很多以前觉得困难的东西,自己也开始觉得简单了,这就是积累的过程。对我来说,数学怎么学好,就是不断地阅读、阅读、再阅读,直到心中的疑云已然消散,所有的一切都显得如此简单,就像流水一样自然,因为数学本来就是自然的。虽然我现在学同调代数起来比以前轻松很多,但是仍有那么一些问题,我怎么想都想不明白,但是我并不感到害怕,因为这便是学数学的乐趣所在,当有个问题你思考了很久很久,几个小时、几天或者几周,甚至几个月、几年,然后某天突然间你有了灵感并解决了这个问题,这其中的快乐简直难以形容!其实我刚开始学研究生的时候,基础半斤八两,本科的东西都没学完,研究生的数学对我来说就像是天书一样。可是我不在意这些,我不在意我是否有天赋、是否有能力去学习这些东西,我只有一个目的即是揭开现代数学神秘的面纱。就这样,我从高一开始坚持 ...