·
文章

如果两个对象的余极限同构,那么这两个对象同构?

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

令$A,B$为特征$p$的交换环。令$\phi_{A}:A\rightarrow A,\phi_{B}:B\rightarrow B$为Frobenius态射,即$p$次方映射。如果我们有 ${\rm{colim}}_{n\in\mathbb{N}}A\cong {\rm{colim}}_{n\in\mathbb{N}}B$,其中transition映射为Frobenius态射,那么我们可以得出$A\cong B$吗?答案:不能。回顾一下,一个$\mathbb{F}_p$-代数$R$是完美的,如果它的Frobenius映射$\varphi : R \ni r \mapsto r^p \in R$是一个同构。Frobenius态射的次方的余极限${\rm{colim}}_{n\in\mathbb{N}}R$是$\mathbb{F}_p$-代数$R$的完美化,并且它这样命名是因为它是完美$\mathbb{F}_p$-代数到$\mathbb{F}_p$-代数的包含映射的左伴随。这使得完美$\mathbb{F}_p$-代数构成了一个$\mathbb{F}_p$-代数的反射子范畴,这意味着在完美 ...

0
132
0 查看评论
2024-10-17 22:03:01
阅读全文
··
5 months ago
·

Note on arithmetic algebraic geometry

cover

The note is mainly a summary of basic knowledge that the author learned in arithmetic geometry. One of the aims of this note is to provide a preliminary for Perfectoid geometry. Most contents are fundamental, but they are essential towards Perfectoid geometry. The ultimate goal of this note is to help readers to understand Peter Scholze's classic paper , where the notion of perfectoid spaces first appeared.