科普科普·

元素周期表中,竟然还有一个不为人知的神秘元素?

发布时间:2024-08-29 10:56:11阅读量:35
科普文章
转载请注明来源

一提到化学,可能大部分人脑海里都会自动出现一连串令人眼花缭乱的复杂方程式,甚至“谈化学色变”。其实,化学并没有这么可怕,它距离我们的日常生活也非常近。从我们每天吸入的氧气和呼出的二氧化碳、“多喝热水”和泡脚养生,到佩戴的各种饰品、驾驶或乘坐的各种交通工具等等,都有化学的“踪迹”。可以说,物质世界就是由化学元素所构成的。

自1869年俄国著名化学家门捷列夫提出元素周期律以来,现包括天然元素及人造元素,已有记录元素共计118个。当科学家们反复审视这张元素周期表时,也更多地开始思考,是否存在一个神秘的0号元素呢?

从原子的结构说起

中学时期,我们就曾经学过,原子由原子核和核外电子组成,是化学反应中的最小单位。其中,原子核由质子和中子通过强相互作用力(质子和中子间独有的吸引力)结合组成。

质子的个数直接关系到元素本身的化学性质,原子核中的质子个数则是区分元素种类的重要标志。相同质子数代表着同种元素,相同质子数和中子数的元素称为一种核素,相同质子数不同中子数的元素互称为同位素。

被人熟知的1号元素——氢元素

相信大家对于元素周期表中的1号元素——氢元素,都并不陌生。在自然界中,氢元素含量丰富。人类生活必需的水,就是由氢元素和氧元素两种元素所组成的。

在氢核素中丰度最高的是仅由一个质子和一个核外电子组成的1H,此外再添加一个中子就得到了同位素氘2H,氘是氢弹的主要原材料。由于1H原子核中没有中子的存在,因此当1H原子失去核外电子时,氢离子也就等同于游离的质子。当大量氢离子存在于水中,水溶液便会产生酸性,这便是酸在水中电离的过程。

举个例子,我们都知道的是,很多酸具有强腐蚀性,就算是生活中常见的调味料食醋,也可以和水垢、铁钉等发生化学反应,这就是质子化学性质最基本的体现。

0号元素真的存在吗?

乍听0号元素,很多人可能会一头雾水。化学书上写的不是“氢氦锂铍硼,碳氮氧氟氖”吗?难道是我的记忆出现了混乱?不用慌!其实,元素周期表里也没有0号元素。那么,这个神秘的0号元素究竟是个啥?

元素周期表中没有,并不代表0号元素就不存在。既然没有中子的质子可以单独作为一个元素,那么没有质子的中子为什么不可以呢?质子个数不同代表着元素种类的不同,那么,没有质子的元素,即0号元素,也被称为中子元素。

早在20世纪初,物理学家安德罗波夫就将自由中子命名为“0号元素”,并将其置于元素周期表中起始位——氦元素的正上方,意为质子数量最少的元素,并用符号Nu表示。

不过,除了少数讨论核素或同位素的情况外,其他情况下并不将0号元素列入元素周期表内。因此,我们在元素周期表中没见过0号元素,也很正常。

衰老的恒星促成0号元素的诞生

0号元素源于恒星的衰老过程,衰老的恒星自身坍塌时会造成极大的压力,将氢元素核外电子压入质子内部,从而形成电中性的中子粒子。其结构并不稳定,自由的中子半衰期只有十分钟左右,在常压环境下,会重新变成质子并释放反电子中微子。

因此,目前0号元素最主要存在于质量极大的中子星内部。正是这种高压的环境,该粒子才得以稳定存在。现阶段在常态环境下,我们很难探索0号元素的化学性质。

虽然我们无法在常态下得到中子,但在20年前,已有科学研究表明可能存在四中子的无电荷核系统。不过,当时的仪器设备误差较大,学界内对于该实验结果存在较大争议。

但是,随着科学技术的不断进步,近期已有报道称,四中子的无电荷核系统可以存在,这也是首次获得四中子核系统存在的确凿实验证据。目前,关于0号元素相关性质的研究仍处于探索阶段,这些研究将对于宇宙起源、亚原子结构等领域起到重要的推动作用。

问题来了,既然0号元素是存在的,那么会不会也存在其他元素周期表中所没有记录到的新元素呢?

元素周期表是否会新增元素呢?

原子核内部复杂的相互作用是原子核稳定存在的重要因素。根据计算,随原子序数的不断增加,以原子序数26的铁元素为界限,元素稳定性先增大后减小。也就是说,如果将所有元素排成一行的话,哪个元素距离铁元素越远,其稳定性就越差。

近代新元素的发现更多集中在原子序数大于110的超重元素,这些超重元素可以通过原子对撞的方式人工合成,具有放射性且寿命较短。2010年,117号元素被合成之后,元素周期表第七周期正式填满。之后十余年时间,科学家在对于第八周期元素的探索道路上从未停止脚步。

然而,由于超重元素的不稳定性,目前为止还尚未有第八周期的新元素被IUPAC承认。不过,研究人员表示,通过对微观粒子相互作用进行更系统的研究后,相信在将来可以提出新的合成方法,以实现到达超重元素“稳定岛”,构建第八周期元素。到那个时候,开辟元素周期表新纪元指日可待。

References

  1. Labarca M. An element of atomic number zero?[J]. New Journal of Chemistry, 2016, 40(11): 9002-9006.
  2. Marqués F M, Labiche M, Orr N A, et al. Detection of neutron clusters[J]. Physical Review C, 2002, 65(4): 044006.
  3. Duer M, Aumann T, Gernhäuser R, et al. Observation of a correlated free four-neutron system[J]. Nature, 2022, 606(7915): 678-682.
评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

cover

原创文章被检测为AI创作,AI检测还靠谱吗?

自从GPT火了以后,网络上的AI内容就变得泛滥了,刚开始还能轻松辨别哪些是AI的(一眼AI),哪些是人写的。现在这一两年里,随着生成式AI不断深入人心,AI内容变得更加泛滥了,并且经过这段时间技术的发展,AI生成的内容越来越真假难辨😢😤,有些AI生成的内容需要仔细辨别才能看出端倪。更可怕的是,道高一尺魔高一丈😔🙁,所谓的AI检测技术发展远远比不上AI生成技术的发展。AI生成的内容跟人越来越像,甚至有时候比人写的还要好,而人写的内容呢,相对的也就越来越AI化了😅。因此目前的AI检测会出现把人写的认定为AI写的荒谬事情。这也就意味着潘多拉魔盒已经彻底打开,AI内容与人的内容的界限开始变得模糊,所有的内容都变得真假难辨,恐怕这样下去人会彻底活在虚幻的世界里😭。以下为AI检测的结果我们检测用的是为什么说外国教材好?国外教材与国内教材的区别与 Djano云服务器部署 uwsgi+nginx+https部署这两篇文章。使用GPTZero进行检测,其他检测工具就不列举说明了,感觉用哪个AI检测结果都不会有太大差别。其实是别的AI检测都太不靠谱了😄,Undetectable.ai感觉就无论给它什么结果 ...

[antd: Message] You are calling notice in render which will break in React 18 concurrent mode. Please trigger in effect instead.

I'm getting this error when using MessageWarning: [antd: Message] You are calling notice in render which will break in React 18 concurrent mode. Please trigger in effect instead.Here is my code:import { message } from 'antd'; export default function Page() { const [messageApi, contextHolder] = message.useMessage(); const res = await fetch("/api/...", { method: "POST", }); if (!res.ok) { messageApi.error("Error! Fail to login!"); } return ( <Home> ... </Home> ) }

逻辑回归算法介绍

逻辑回归是一种用于二分类和多分类任务的机器学习算法。尽管名字中包含“回归”一词,但它主要用于分类,而不是预测连续值。逻辑回归通过构建一个线性模型,并通过非线性函数将其映射到一个概率空间,从而实现分类。以下是逻辑回归的主要特点和工作原理:线性模型:逻辑回归首先构建一个线性模型。设 (x_1, x_2, \ldots, x_n) 是输入特征,(w_1, w_2, \ldots, w_n) 是权重,(b) 是偏置,那么线性组合可以表示为: [ z = w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n + b. ]Sigmoid函数:为了将线性模型的输出转换为概率,逻辑回归使用sigmoid函数,也称为逻辑斯蒂函数。该函数可以将任意实数映射到0和1之间,定义如下: [ \sigma(z) = \frac{1}{1 + \exp(-z)}. ]输出概率:通过sigmoid函数,线性模型的输出被转化为概率。对于二分类任务,这个概率可以解释为样本属于某个类别的概率。例如,如果我们预测输出为1的概率是0.7,那么预测输出为0的概率就是0.3。 ...

cover

浅谈《天国:拯救》中的骰子游戏

原链接: https://zhuanlan.zhihu.com/p/386924079?utm_campaign=shareopn&utm_medium=social&utm_psn=1806094671581167616&utm_source=wechat_session 正文:《天国:拯救》是由战马工作室制作的中世纪RPG游戏,根据1403年发生的真实历史改编。本作的故事发生在中世纪时,匈牙利之王与瓦茨拉夫四世内战的波西米亚,《天国:拯救》的故事是根据真实历史改编的。随着贤君查理四世驾崩,神圣罗马帝国陷入了战争、腐败与混乱。瓦次拉夫,查理四世的儿子,却沉迷荒淫之事而不理朝政。瓦茨拉夫不满的宗亲贵族最后只能求助于瓦茨拉夫的皇兄——匈牙利之王,西格斯蒙德。但西格斯蒙德最后采用了极端的方式,绑架国王,逼其退位,趁乱夺权,其率部队大举进攻波西米亚,并侵蚀国王盟友的领地。在这乱世中,铁匠之子亨利在城镇斯卡里茨和父母过着平凡而快乐的生活,但这平静生活被一群库曼人雇佣军所打乱,他们收到了西格斯蒙德的亲令,掠夺并烧毁了城镇,在这次混乱中,亨利是为数不多的逃过这场浩劫的幸存者 ...

宇宙的最终结局会是什么?宇宙命运结局的三种假说

宇宙是如何诞生的?这个问题一直吸引着人类的好奇心。随着二十世纪六十年代,宇宙微波背景辐射的发现,科学界普遍认为,宇宙起源于大约138亿年前的一次大爆炸。然而,宇宙的最终结局又是怎样的呢?这是另一个让人类深思的问题。自人类诞生以来,人们就对死亡充满了恐惧,因为死亡意味着失去一切,无论是美好的事物,还是别的东西,全都将趋于“虚无”。虽然人类对死亡非常恐惧和厌恶,但是它似乎是宇宙中的一道铁律,目前仍然没有破解和逃脱的方法。不仅地球上所有的生物都难逃灭亡的结局,就连宇宙本身或许也不是永恒存在的,它也许会在遥远未来的某天迎来自己的终结,这已成为科学界公认的事实。关于宇宙的最终结局,科学家们提出了多种假说。其中一个是“大撕裂”理论,随着科学的发展,科学家们又提出了另外两种关于宇宙最终命运的假说:热寂和大坍缩。本期内容我们就来聊聊这个话题。1. 大撕裂假说图片来自网络宇宙的命运一直是天文学家争论不休的话题。有些人认为宇宙将永远存在,而另一些人则认为它最终会走向毁灭。如果你是一个科学家,你可能会对宇宙的未来感到担忧。因为有一种假说告诉我们,宇宙的结局可能是一场灾难性的大撕裂!大撕裂理论认为,宇宙的膨胀 ...

物理学家打造史上最难迷宫:极易碎成微粒

代达罗斯本可以从英国和瑞士的物理学家团队那里获取灵感。他们从分形几何和国际象棋的策略游戏中汲取原理,创造出了他们所说的有史以来最难的迷宫。在英国布里斯托尔大学物理学家菲利克斯·弗利克的带领下,这个研究小组在阿曼-比克尔平纹图案中产生了被称为汉密尔顿循环的路线,创造了复杂的分形迷宫。他们说,这些分形迷宫描述了一种被称为准晶体的特殊物质形态。它的灵感来自于一个骑士在棋盘上的移动。“当我们观察我们构建的线条的形状时,我们注意到它们形成了令人难以置信的复杂迷宫。随后迷宫的大小呈指数级增长,且数量无限,”弗莱克解释说。“在骑士之旅中,棋子(向前跳两个格,向右跳一个格)在回到起始方格前只访问一次棋盘的每个方格。这是‘汉密尔顿循环’的一个例子,即通过地图的循环只访问所有站点各一次。”准晶体是自然界中极其罕见的物质形态,是固体中有序和无序晶体的奇特混合。在有序的晶体中 —— 如盐、钻石或石英 —— 原子以非常整齐的模式排列,并在三维空间中重复。你可以将这个晶格的一部分叠加到另一部分上,它们就会完美地匹配。无序的或无定形的固体是指其中的原子都是乱糟糟的,包括玻璃和一些通常在地球上找不到的冰。准晶体是一种 ...

cover

地心人和外星人阴谋论

由于本文对超维度到能拨弄时间的文明是否存在这个问题持有悲观态度,因此论述条件限制在三维下。 1.1 地心文明论我们默认地心是指距离地面6000公里的地方,这个地方的特点是:4000摄 氏度以上的极高温360 GPa 的地心压力没有阳光、几乎没有水分、氧气放射性元素衰变产生的大量辐射不依靠【温室】能在这种地方活下来的生物应该具有的特点:不能 是碳基,因为蛋白质DNA细胞分子结构全都会在高温下遭到破坏生物体 结构要异常坚韧,能在极高压下维持运作能有办法直接或间接吸收地热 能量维持生物体运作,且这个过程气体和水不参与反应其生存和繁衍模式能与辐射共生我们目前探测地心的手段有:由于地球内部的密度变化会影响地球重力场,因此精确重力测量可以给出地下岩石密度变化 由于地核中的液态铁和镍会产生磁场,通过探测地球磁场变化可以分析地壳中磁性物质分布遇到液体层会减速的纵向地震波,和只在固体传播的横向地震波人类的理性只能讨论可知的部分,讨论不可知部分是无效操作,在可知的范围内,目前只有少量微生物能在深底层存活,马里亚纳海沟最深处的生物也只是距离地面11公里而已。在可知范围内,没有任何生物能在地心长期生存。在贝叶 ...