Arithmetic geometry

Algebraic geometry studies the set of solutions of a multivariable polynomial equation (or a system of such equations), usually over $\mathbb{R}$ or $\mathbb{C}$. For instance, $x^{2} + xy − 5y^{2} = 1$ defines a hyperbola. It uses both commutative algebra (the theory of commutative rings) and geometric intuition.

Arithmetic geometry is the same except that one is interested instead in the solutions where the coordinates lie in other fields that are usually far from being algebraically closed. Fields of special interest are $\mathbb{Q}$ (the field of rational numbers) and $\mathbb{F}_{p}$ (the finite field of $p$ elements), and their finite extensions. Also of interest are solutions with coordinates in $\mathbb{Z}$ (the ring of integers).

Related

Note on perfectoid spaces

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.§1. Adic SpacesDefinition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.§1.1. Morphisms of finite type. The material can be seen in [SP] and [Hu1].First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.We say that $f$ is of finite type if it is quasi-compact and locally of finite type.We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation. Compared with the above definition, we reach to the case of adic spaces.Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.We say that $f$ is of finite type if it is quasi-compact and locally of finite type.We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.§1.2. Unramified, smooth, and étale morphisms.For definitions of morphisms of finite type and finite presentation, see §1.1.First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagramwhere $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.Definition 1.5. Let $R\rightarrow S$ be a ring map.We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.Definition 1.6 ([Hu1, Definition 1.6.5]). A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.§1.3. Berkovich’s analytic spaces.We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].§1.3.1 Underlying topological spaces.First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.Definition 1.7.A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.§1.3.2 The category of analytic spaces.Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:(i) $\mathscr{M}(K)\in\Phi_{K}$.(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.§1.4. Rigid analytic varieties.The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].§1.4.1 $G$-topological spaces. As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists ofa category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, anda set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.§1.4.2 Presheaves and sheaves on $G$-topological spaces. The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.Morphisms of presheaves or sheaves are just natural transformations of functors.Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.Hence, we can define presheaves and sheaves on a $G$-topological space.Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.The following kind of Grothendieck topology is of special interest to us.Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.§1.4.3 Locally $G$-ringed spaces and analytic varieties.The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.§2. Almost mathematicsIn this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].References [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993). [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.
2024-04-26 21:18:04

代数几何简介

1. Introduction代数几何是数学的核心领域,也是如今国际数学界的主流。代数几何与许多数学分支都存在广泛的联系,比如数论、微分几何、代数拓扑、复几何、表示论、同调代数、交换代数、偏微分方程等等,这些分支的发展同时也对代数几何起到促进作用。数学史上的许多重大的事件,比如,费马大定理、莫德尔猜想、韦伊猜想的证明都跟代数几何有关。同时,代数几何存在广泛的应用,比如密码学、弦理论、大数据、统计学习理论等等。代数几何之下有众多分支,比如复代数几何,热带几何,算术几何,远阿贝尔几何,$p$进霍奇理论(complex algebraic geometry, tropical geometry, arithmetic geometry, anabelian geometry, p-adic hodge theory),每个分支代表代数几何研究的一个大方向,而在每个大方向下,又有各种以不同的问题为导向的子方向。在这篇文章中,我们将会对代数几何,包括它的分支算术代数几何,做一个简短的介绍。2. An Introduction to Arithmetic Geometry算术几何是算术代数几何的简称,它是代数几何的一个分支,主要研究与数论有关的问题,比如丢番图方程。著名的费马大定理其实就是丢番图方程的一种。Definition 2.1. Diophantine equations are equations whose solutions are required to be integers.Example 2.2. The equations in Fermat's Last Theorem : $x^{n} + y^{n} = z^{n}$ for all integers $n\geq 2$ are Diophantine equations.Example 2.3. The equations $ax + by = c$ are called linear Diophantine equations.Example 2.4. The equations $x^{2} + y^{2} = z^{2}$ are called Pythagorean equations.从上可以看出椭圆曲线与丢番图方程之间存在某种联系,因此数论上的问题就可以转移到几何上的椭圆曲线进行研究。接下来,我们将给出椭圆曲线的定义,但是在此之前我们先做一些约定。我们记$K$为一个任意的域,$f(x)\in K[x]$ 为$K$上的一个三次多项式,假设这个多项式有不同的根,由于这个域并不一定是代数闭域,因此有些不同的根存在于这个域的代数闭包 $\overline{K}$上。同时,我们假设域$K$不是特征2的。Definition 2.5. The solutions to the equation $y^{2} = f(x)$ , where $x$ and $y$ are in some extension $K'$ of $K$, are called the $K'$-points of the elliptic curve defined by the equation.Example 2.6. The locus of the equations $y^{2} = x^{3} - n^{2}x$ is a special case of elliptic curve.Figure 1. Elliptic curves从上面的定义和这个例子,我们可以看出椭圆曲线的方程形式上像一个丢番图方程。事实上,当我们限定椭圆曲线方程的解为整数解时,方程就成为了丢番图方程。既然说到了椭圆曲线,我们不得不提及一下跟椭圆曲线有关联的椭圆函数。椭圆函数是19 世纪数学最光辉的成就之一,它当初是由求椭圆弧长诱导出来的,与椭圆积分也有很密切的联系,毕竟椭圆积分就是用来求椭圆弧长的。顺带一提,椭圆周长目前没有办法求精确值,其周长表达式没法表达成初等函数的形式,它只有椭圆积分表达式以及级数展开式。在定义椭圆函数之前,我们需要先定义复数域$\mathbb{C}$上的lattice。Definition 2.7. A lattice $L$ in the complex plane is the set of all integral linear combinations of two given complex numbers $\omega_{1}$ and $\omega_{2}$, where $\omega_{1}$ and $\omega_{2}$ are linear independent.Example 2.8. If we take $\omega_{1}$ = 1 and $\omega_{2}$ = $i$, we will get a lattice of Gaussian integers $\{mi+n| m , n\in \mathbb{Z}\}$.Definition 2.9. A meromorphic function on $\mathbb{C}$ is said to be an elliptic function relative to a given lattice $L$, if $f(z+l)=f(z)$ for all $l\in L$.从定义可以看出,椭圆函数是一个双周期的函数。这使人联想到实数情况的单周期函数。一个$\mathbb{R}$上的周期函数,可以看成一个圆上的函数,而一个$L$的椭圆函数则可以看成一个圆环上的函数。我们可以证得关于一个lattice 的所有椭圆函数的集合构成一个域$\mathcal{E}_{L}$,它是所有亚纯函数的域的子域,因为任意两个椭圆函数的和差积商都是椭圆函数。接下来,我们继续讨论椭圆曲线。椭圆曲线与模形式有紧密的关联,而它们之间的联系成为了证明费马大定理的关键。由于作者并不能完全看懂费马大定理的证明,因此这里不做过多阐述。我们知道当年最后完成费马大定理证明的数学家是Wiles,而Wiles在他的paper 中证明了所有有理数集上的半稳定的椭圆曲线都是modular的,从而使费马大定理成为一个推论被证明。值得一提的是,Wiles在十岁的时候在一本叫做《最后定理》的书中了解到了费马大定理,他很受震撼并打算成为第一个解决费马大定理的人,最后正如他自己所说,很多数学家用自己的一生尝试解决费马大定理都没有成功,最后只有他成功了。关于椭圆曲线、椭圆函数、模形式、费马大定理的证明,想了解更多的读者可以参考[1], [11]。讲完费马大定理,接下来我们来讲讲费马大定理背后的故事,即费马大定理之所以最后能够被Wiles证明,主要是归功于某些数学家的关键性工作。其中两位即是日本数学家Shimura 和Taniyama,他们提出的谷山—志村猜想成为了证明费马大定理的关键一步。还有一位数学大师,在讲他之前我们需要先做一些铺垫。上个世纪,算术几何中不仅仅只有费马大定理,还有韦伊猜想(有限域上的黎曼猜想)、莫德尔猜想。韦伊猜想被Deligne所证明,而莫德尔猜想被Faltings所证明。Deligne和Faltings都是如今数学界的泰斗级人物,不论是Wiles、Deligne还是Faltings ,他们的证明都离不开一个人的奠基性工作,他就是被很多人认为是20世纪最伟大的数学家Grothendieck。Grothendieck被称作代数几何的教皇,有一句很经典的描述他的话就是:“20世纪代数几何涌现了很多天才和菲尔兹奖,但是上帝只有Grothendieck一个。”Grothendieck的工作使代数几何这门古老的学科重新焕发出新的生命力,这也使代数几何进入如今的黄金时期。Grothendieck的哲学直接被数学所吸收,以至于现在数学的新人根本无法想象Grothendieck时代前这个领域的模样。从二十世纪中叶开始,整个代数几何领域越来越抽象和普遍的研究倾向,大部分都得归功于Grothendieck的影响。Grothendieck 的影响之大,几乎所有数学分支都能感受到。如今的代数几何已经是后Grothendieck时代了,代数几何涌现出了很多后起之秀,比如说日本数学家Shinichi Mochizuki、德国数学家Peter Scholze。接下来,我们继续介绍算术几何的有关内容。上文中我们提到了可以通过研究椭圆曲线和模形式,进而研究数论问题。而椭圆曲线其实只是代数曲线中的一种特殊情况,代数曲线是算术几何的一个重要研究课题。别看名字很高大上,它其实很常见,比如说在欧几里得平面上的代数曲线,就是我们用多项式方程$f(x,y) = 0$所定义的平面曲线。而想要定义一般的代数曲线就不那么简单了,这需要用到Grothendieck发展的概形的理论。在定义一般的曲线之前,我们需要不少的预备知识,因此在这里我们只做简单的描述,想要了解更多细节的读者可以参考[2]。首先,在定义概形之前,我们需要定义层的概念。我们有阿贝尔群层、环层、模层等等,取决于层所取的范畴。关于范畴论的概念不熟悉的读者可以参考[7]。Definition 2.10 ([2], [16]). Let $X$ be a topological space. A presheaf $\mathcal{F}$ of abelian group on $X$ is a contravariant functor $$ \mathcal{F}:\textbf{Top}^{\textrm{opp}}\rightarrow \textbf{Ab}$$ from the category of open sets of $X$ to the category of abelian groups.If $\mathcal{F}$ is a presheaf on $X$, the set $\mathcal{F}(U)$ consists of the sections of $\mathcal{F}$ over the open set $U$. If $s\in \mathcal{F}(U)$, we write $s|_{V}$ for an element of $\mathcal{F}(V)$ corresponding to $s$.Definition 2.11. A presheaf $\mathcal{F}$ on a topological space $X$ is a sheaf, if it satisfies the following conditions:(Uniqueness) if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$, then for an element $s\in \mathcal{F}(U)$ such that $s|_{V_{i}}$ = 0 for all $i$, we have $s = 0$.if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$. If we have elements $s_{i}\in \mathcal{F}(V_{i})$ for each $i$, such that for each $i, j$, $s_{i}|_{V_{i} \cap V_{j}} = s_{j}|_{V_{i}\cap V_{j}}$, then there is an element $s \in \mathcal{F}(U)$ such that $s|_{V_{i}} = s_{i}$ for each $i$.Definition 2.12. Let $\mathcal{F}$ be a presheaf on $X$, if $P$ is a point of $X$, we define the stalk $\mathcal{F}_{P}$ of $\mathcal{F}$ at $P$ to be direct limit of the groups $\mathcal{F}(U)$ $$\lim\limits_{\longrightarrow}\mathcal{F}(U)$$ for all open sets $U$ containing $P$.一个预层上某个点的茎$\mathcal{F}_{P}$,其实就是一个等价类的集合,我们可以记茎中任意一个元素为$\langle U,s\rangle$,并称它为$\mathcal{F}$截面的芽。其中$U$为$P$ 点的开邻域,$s\in\mathcal{F}(U)$。接下来,我们记$A$为一个环,$Spec(A)$为该环所有素理想的集合,称为谱。如果$\alpha$是环$A$的任意一个理想,我们记$V(\alpha)\subseteq Spec(A)$为所有包含理想$\alpha$ 的素理想的集合。我们令$V(\alpha)$为$Spec(A)$中的闭集,从而在$Spec(A)$上定义了一个Zariski拓扑。接着,我们再定义拓扑空间$Spec(A)$上的环层$\mathcal{O}$。 这样下来,$(Spec(A),\mathcal{O})$成为一个局部赋环空间。接下来我们给出赋环空间的定义。回顾一下,一个环$A$被称为局部环,如果它只有唯一一个极大理想$\mathfrak{m}_{A}$。Definition 2.13. A ringed space is a pair $(X,\mathcal{O}_{X})$, where $X$ is a topological space and $\mathcal{O}_{X}$ is a sheaf of rings on $X$ called the structure sheaf. A ringed space is a locally ringed space, if for each $P\in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.有了上面这些储备,我们终于可以定义概形。首先我们定义仿射概形,之后就是一般的概形。Definition 2.14. An affine scheme is a locally ringed space $(X,\mathcal{O}_{X})$, which is isomorphic to a spectrum $\textrm{Spec }A$ of some ring $A$. A scheme is a locally ringed space $(X,\mathcal{O}_{X})$ in which every point $p$ of $X$ has an open neighborhood $U$ such that $(U,\mathcal{O}_{X}|_{U})$ is an affine scheme.从以上的定义,我们可以看出概形跟流形有异曲同工之妙。对于一个流形来说,它局部上都是一个欧几里得空间。而对于一个概形来说,它局部上都是一个仿射概形,同时因为同构关系,概形局部上的仿射概形可以看成某个环的谱。这样下来,流形由一个个欧几里得空间拼起来,而概形由一个个环的谱拼起来。而事实上,微分几何里的流形是可以用局部赋环空间表示的(更多细节请参考[10], [15])。现在我们有了概形,就可以定义一般意义上的代数曲线了。在此之前,我们先定义概形的一些基本性质。Definition 2.15. Let $X$ be a scheme. We say that $X$ is integral if for each open affine set $U\subset X$, $\mathcal{O}_{X}(U)$ is an integral domain.Definition 2.16. Let $f:X\rightarrow Y$ be a morphism of schemes. The diagonal morphism of $X$ is a morphism $\triangle:X\rightarrow X\times_{Y}X$ such that $\textrm{pr}_{1}\circ\triangle=\textrm{pr}_{2}\circ\triangle=\textrm{id}_{X}$. We say that $f$ is separated or that $X$ is separated over $Y$ if the diagonal morphism of $X$ is a closed immersion.Definition 2.17. Let $f:X\rightarrow Y$ be a morphism of schemes. We say that $f$ is proper or that $X$ is proper over $Y$ if $f$ is separated, of finite type, and universally closed.Definition 2.18. Let $X$ be a scheme. The dimension of $X$ is the dimension of its underlying topological space $\textrm{sp}(X)$, which we will denote by $\textrm{dim }X$.Definition 2.19. An algebraic curve is an integral scheme of dimension 1, proper over a field $K$, all of whose local rings are regular.因此,一个代数曲线其实就是一个一维的概形。流形也如此,一维的流形也叫做曲线。以上我们完成了对代数曲线的定义,通过代数曲线我们可以研究数论问题。但是,研究代数曲线是需要工具的。在这些工具中,就有algebraic stack和moduli theory。Algebraic stack是stack的特殊情况,stack是对概形的进一步推广。而stack可以看成某种群胚纤维化范畴(category fibred in groupoid),可以运用Descent à la Grothendieck来定义。而moduli theory就是研究某一类数学对象的参数空间,比如曲线的模空间、椭圆曲线的模空间。由于目前这些理论不是作者的研究方向,作者不作过多阐述。2.1 The $p$-adic numbers field $\mathbb{Q}_{p}$ and the $p$-adic integers ring $\mathbb{Z}_{p}$接下来,我们来简单说明一下$p$进数域$\mathbb{Q}_{p}$是如何构造出来的。首先,我们以有理数域$\mathbb{Q}$为例,粗略解释一下完备化(completion)的过程:我们取有理数域所有柯西序列构成的集合,定义逐项加法和乘法后可以证明它构成一个交换环,接着模掉所有零序列构成的理想,我们就得到一个完备的域,它是有理数域的域扩张。一个域的完备化不是唯一的,对应不同定义于域上的绝对值,我们可以定义不同的柯西序列,进而构造出不同的完备化。在这里,我们给出任意域上的绝对值与完备域的定义。Definition 2.20. Let $K$ be a field. An absolute value on $K$ is a map $\left|\cdot\right|:K\rightarrow\mathbb{R}_{\geq0}$ such that $\left|x\right|=0\Leftrightarrow x=0$, $\left|xy\right|=\left|x\right|\left|y\right|$, and $\left|x+y\right|\leq\left|x\right|+\left|y\right|$. We say that $K$ is complete if it is complete with respect to the distance $d(x,y)=\left|x-y\right|$ induced by the absolute value $\left|\cdot\right|$ on it.接下来我们先定义有理数域上的$p$进序数。Definition 2.21. Let $p$ be any prime number. We define the $p$-adic ordinal ord$_{p}a$ of an non-zero integer $a$ to be the highest power of $p$ which divides $a$, i.e. the greatest $m$ such that $p^{m}|a$ or $a\equiv0(\textrm{mod }p^{m})$.我们约定当整数$a=0$时,ord$_{p}a=\infty$。接着对于任意$x=a/b\in\mathbb{Q}$,我们定义$\textrm{ord}_{p}x=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。如果将ord看成一个函数,那么它是良定义的,因为如果将$x$写成$x=ac/bc$,我们有$\textrm{ord}_{p}x=\textrm{ord}_{p}ac-\textrm{ord}_{p}bc=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。接着我们定义$p$进绝对值:$$\left| x \right|_{p} = \begin{cases} \frac{1}{p^{\textrm{ord}_{p}x}}, & \textrm{if} \ x\neq 0\\ 0,  & \textrm{if} \ x = 0. \end{cases}$$我们先阐述复数域$\mathbb{C}$的构造过程,首先我们作有理数域$\mathbb{Q}$的完备化(关于通常的绝对值$\left|\cdot\right|$)$\widehat{\mathbb{Q}}$得到实数域$\mathbb{R}$,然后取实数域的代数闭包$\overline{\mathbb{R}}$ 得到复数域。$p$进数域$\mathbb{Q}_{p}$其实就是有理数域$\mathbb{Q}$的$p$进完备化(关于$p$进绝对值 $\left|\cdot\right|_{p}$)$\widehat{\mathbb{Q}}$。然而当我们取$p$进数域的代数闭包$\overline{\mathbb{Q}}_{p}$时,发现它不是完备的,因此我们对其再作一次完备化,最后得到$\mathbb{C}_{p}$。它是最小的包含有理数域的既是代数闭的,又是完备的域。于是,我们有如下关系:$$\begin{cases} \mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}=\widehat{\overline{\widehat{\mathbb{Q}}}}, \textrm{p-adic analog} \\ \mathbb{C}=\overline{\mathbb{R}}=\overline{\widehat{\mathbb{Q}}}, \textrm{usual case} \end{cases}$$接着$p$进整数环$\mathbb{Z}_{p}$即是$p$进数域$\mathbb{Q}_{p}$的离散赋值环:$$\mathbb{Z}_{p}:=\{x\in\mathbb{Q}_{p}\mid \left|x\right|_{p}\leq1\}.$$3. Grothendieck's Theory接下来,我们来回顾一下上世纪Grothendieck所做的工作。其实代数几何如今整体上能分成两个方向,一个是以Grothendieck发展的抽象理论为基础的方向,另一个是与微分几何结合主要研究复几何的方向(参考[14])。Grothendieck所做的工作当然远远不止上文所说的概形,还有étale cohomology(平展上同调), crystalline cohomology(晶体上同调), $l$-adic cohomology($l$进上同调), topos(拓扑范), motives, Grothendieck topology, Grothendieck universe等等。除此之外,Grothendieck 还有三本被誉为代数几何圣经的著作,分别是EGA(Éléments de géométrie algébrique),SGA(Séminaire de géométrie algébrique)和FGA(Fondements de la Géometrie Algébrique),翻译成中文就是《代数几何原理》、《代数几何讨论班》和《代数几何基础》。首先我们来说说Grothendieck著名的motives理论,该理论的哲学即是将所有的性质相似的上同调,诸如奇异上同调、德拉姆上同调、平展上同调和晶体上同调,统一起来。下面我们给出上同调的定义,该定义涉及到阿贝尔范畴。所谓的阿贝尔范畴,它的原型是阿贝尔群范畴,上世纪Grothendieck将其重要的性质抽象出来,只剩下足够计算同调代数的东西。Definition 3.1. A cochain complex $\mathcal{C}= \{\mathcal{C}^{n},d^{n}\}$ in an abelian category $\mathfrak{U}$ is a collection of objects $C^{i},i\in \mathbb{Z}$ , and morphisms $d^{i} : C^{i} \rightarrow C^{i+1}$, such that $d^{i}\circ d^{i+1} = 0$. The morphisms $d=\{d^{i}\}$ are called the differential (or coboundary operator).The $i$th cohomology object of the complex $\mathcal{C}$ is defined to be $H^{i}(\mathcal{C}) = \textrm{Ker }d^{i}/\textrm{Im }d^{i-1}$.根据范畴的不同,我们可以定义上同调群、上同调模,接着就可以定义singular cohomology(奇异上同调)、de Rham cohomology(德拉姆上同调)、Galois cohomology(伽罗华上同调)、Čech cohomology (切赫上同调)等等。在集合论中,我们有类与集合的概念。所谓的类由所有享有共同性质的数学对象构成,但是它不一定是一个集合,如果它不是一个集合,我们称这个类是真类。接下来,我们给出Grothendieck universe 的定义,它是在上世纪由Grothendieck提出来的,用来避免不构成集合的真类。如果读者想要了解更多相关内容,可以参考[5], [6]。Definition 3.2. A Grothendieck universe is a non-empty set $\mathcal{U}$ that satisfied the following conditions:if $x\in \mathcal{U}$ and $y\in x$, then $y\in \mathcal{U}$.if $x,y\in \mathcal{U}$, then $\{ x,y\}\in \mathcal{U}$.if $x \in \mathcal{U}$, then $\mathcal{P}(x) \in \mathcal{U}$, where $\mathcal{P}(x)$ denotes the set of all subsets of $x$.if $(x_{i},i\in I)$ is a family of elements of $\mathcal{U}$ and $I \in \mathcal{U}$, then $\bigcup_{i\in I}x_{i} \in \mathcal{U}$.4. Modern Mathematics以上内容其实都已经是以前发展的理论了,基本上都是20世纪的内容,已经有点旧了。接下来,我们讲一下21世纪比较新的内容:Shinichi Mochizuki和Peter Scholze的工作。Shinichi Mochizuki(望月新一)就是那位声称证明了abc猜想的数学家,我们习惯叫他为望月大神。他刚开始主要是做hyperbolic curve相关的研究的,后来他开始通过运用自己以前的研究成果来研究远阿贝尔几何(anabelian geometry)。远阿贝尔几何最初是Grothendieck提出来的一个宏伟的理论,如今它被望月新一进一步发展,构建了一个名叫宇宙际理论(Inter-universal Teichmüller Theory)的东西,用于证明abc猜想,可惜世界上没有多少数学家能够看得懂他的证明,因此关于他的证明主流数学界仍不认可。不同的是,Peter Scholze的工作则更为主流数学界所接受,很多人都更愿意做Peter Scholze的方向。Peter Scholze就是那个国际奥林匹克数学竞赛拿金牌,高中开始学习研究生数学的数学家,很年轻。在他的博士论文中,他发展出了一个叫状似完备空间(perfectoid spaces)的新东西,成为了当代算术几何最具影响力的数学家之一。4.1. Rigid GeometryPeter Scholze 所做的perfectoid spaces与刚性几何(Rigid Geometry)有关,接下来我们将对刚性几何的部分内容做介绍。想要了解更多的读者请参考[3], [4]。首先我们需要研究非阿基米德的绝对值。对于与绝对值相关的valuation,在本文中我们将不予讨论。我们着重讨论非阿基米德的绝对值的特别之处。Definition 4.1. A (non-archimedean) absolute value $\upsilon$ on a field $K$ is a map $\left| \cdot \right|$ : K $\rightarrow$ $\mathbb{R}_{\geq0}$, such that for all $x,y\in K$ the following conditions verified:$\left| x \right|$ = 0 $\Leftrightarrow$ $x=0$.$\left| xy \right|$ = $\left| x \right|$$\left| y \right|$$\left| x+y \right| \leq \max\{\left| x \right|, \left| y \right|\}$Proposition 4.2. Let $x,y\in K$, we have $\left| x+y \right|$ = $\max\{\left| x \right|, \left| y \right|\}$, if $\left| x \right| \neq \left| y \right|$.Proof. Without loss of generality, we assume $\left| x \right| < \left| y \right|$. Then $\left| x+y \right|$ $<$ $\max\{\left| x \right|, \left| y \right|\}$ =$ \left| y \right|$ implies$$\ \left| y \right| = \left| (y+x)-x \right| \leq \max\{\left| x+y \right|, \left| x \right|\} < \left| y \right|$$which is contradictory. So we must have $\left| y \right| = \left| y+x \right| = \max\{\left| x \right|, \left| y \right|\}$ as claimed.通过绝对值,我们定义任意域$K$上的距离为$d(x,y) = \left| x-y \right|$,然后该距离诱导出$K$上的一个拓扑。有了$K$中任意两点的距离,根据非阿基米德的三角不等式,对于所有$x,y,z \in K$,我们可以得出:$$d(y,z) \leq \max\{d(x,y),d(x,z)\}$$根据命题4.2,该不等式两边相等,如果不等式右边的两个距离不相等。这意味着:在域$K$中的任意三角形,都是等腰三角形。更进一步,我们可以证出:域$K$中任意一个圆盘中的点都可以作为该圆盘的中心。因此,如果$K$中的两个圆盘有非空交集,那么它们就是共心的。下面我们给出证明。Definition 4.3. For a centre $a\in K$ and a radius $r\in \mathbb{R}_{> 0}$, we define the disk without boundary to be the set $$D^{-}(a,r) = \{ x \in K\mid d(x,a)<r \}$$ And we define the disk with boundary to be the set $$D^{+}(a,r) = \{ x \in K\mid d(x,a)\leq r\}$$Proposition 4.4. Each point of disk without boundary in K is the centre of the disk.Proof. Assume that $a$ is the centre of a disk, $b$ is a point different from $a$. For any $x\in D^{-}(a,r)$, we have $$ d(x,b) = \left| x-b \right| = \left| (x-a)+(a-b) \right| \leq \max\{\left| x-a \right|,\left| a-b \right|\} < r $$类似的,我们可以证明对于有边界的圆盘,其中的任意一点都可以是它的中心。4.2 Perfectoid Geometry接下来我们粗略地说一下,Perfectoid spaces, [4],这篇文章里面的一些内容,鉴于作者水平有限,不能一一详述。首先,perfectoid是perfect+oid,意思就是more or less perfect,类完美。首先,我们回顾一下什么是完美域(perfect fields)。Definition 4.5. Let $K$ be a field. We say that $K$ is perfect if either $K$ has characteristic $0$, or if $K$ has characteristic $p>0$, the Frobenius $$ \Phi:K\rightarrow K, x\mapsto x^{p}$$ is an isomorphism.Perfectoid spaces这篇文章的动机源于以下Fontaine-Wintenberger的一个定理:Theorem 4.6. The absolute Galois groups of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and $\mathbb{F}_{p}((t))$ are canonically isomorphic.Remark 4.7. $$\mathbb{Q}_{p}(p^{1/p^{\infty}})=\lim_{\substack{\longrightarrow \\ n>0}}\mathbb{Q}_{p}(p^{1/p^{n}})=\bigcup_{n>0}\mathbb{Q}_{p}(p^{1/p^{n}}).$$$\mathbb{Q}_{p}(p^{1/p^{\infty}})$是一个特征0的域,它的剩余类域$\mathbb{F}_{p}$是特征$p$,这种域被称为混合特征的(mixed characteristic)。而$\mathbb{F}_{p}((t))$ 是一个特征$p$的域。意思是如果将所有$X^{p^{n}}-p\in\mathbb{Q}_{p}[X]$的根加到$\mathbb{Q}_{p}$里面,它会看起来像一个特征$p$的域$\mathbb{F}_{p}((t))$。想要更好地理解$\mathbb{Q}_{p}(p^{1/p^{n}})$是什么意思,可以参考$\mathbb{C}\cong\mathbb{R}(i)\cong\mathbb{R}[X]/(X^{2}+1)$这个例子。同时,我们有这样一个tower:$$\mathbb{Q}_{p}\subseteq \mathbb{Q}_{p}(p^{1/p})\subseteq \mathbb{Q}_{p}(p^{1/p^{2}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{n}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{\infty}}).$$定理4.6可以在更加一般的框架下研究,这就引申出了perfectoid fields。 首先,我们给出非阿基米德域的定义,它其实就是一个拓扑由一个非阿基米德绝对值生成的拓扑域。Definition 4.8. A non-archimedean field is a topological field $K$ whose topology is induced by a non-trivial valuation of rank 1.Definition 4.9. A perfectoid field is a complete non-archimedean field $K$ with residue characteristic $p>0$ whose associated rank-1-valuation is non-discrete and the Frobenius $\Phi:K^{\circ}/p\rightarrow K^{\circ}/p,x\mapsto x^{p}$ is surjective.Example 4.10. The $p$-adic completion $\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}$ of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and the $t$-adic completion $\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}:=\mathbb{F}_{p}((t))((t^{1/p^{\infty}}))$ of $\mathbb{F}_{p}((t))(t^{1/p^{\infty}})$ are perfectoid fields.$$\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}=\widehat{\mathbb{Z}_{p}[p^{1/p^{\infty}}]}[\frac{1}{p}]=(\lim_{\longleftarrow} \mathbb{Z}_{p}[p^{1/p^{\infty}}]/p^{n})[\frac{1}{p}],$$$$\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}=\widehat{\mathbb{F}_{p}[t^{1/p^{\infty}}]}[\frac{1}{t}]=(\lim_{\longleftarrow} \mathbb{F}_{p}[t^{1/p^{\infty}}]/t^{n})[\frac{1}{t}].$$Perfectoid field叫做类完美域,当它为特征$p$时,它是一个完美域。同时,这里有一个tilt的过程,它可以看成一个函子叫做tilt funtor:$$K\mapsto K^{\flat}$$将一个任意特征的perfectoid field打到一个特征$p$的perfectoid field。同时,我们有$$K^{\flat}=\lim_{\substack{\longleftarrow \\ x\mapsto x^{p}}}K.$$接着我们有了更加一般的定理,它推广了定理4.6。Theorem 4.11. The absolute Galois groups of $K$ and $K^{\flat}$ are canonically isomorphic.总之,这篇文章中,Peter Scholze提出一种框架,它能将任意特征的问题简化为特征$p$的问题,因为特征$p$往往更好研究,同时也有很多好的性质和结论。References Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag New York, Inc., 1993. Robin Hartshorne, Algebraic Geometry, Springer, New York, NY, Springer Science+Business Media New York, 1977. Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014. Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), pp. 245–313. Grothendieck with Artin, M. and Verdier, J. L. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Springer-Verlag Berlin Heidelberg, 1973. Pierre Deligne, Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Springer-Verlag Berlin Heidelberg, 1977. Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Springer-Verlag New York, 1997. Fredrik Meyer, Notes on algebraic stacks, https://blog.fredrikmeyer.net/uio-math, 2013. G. Everest and Thomas Ward, An Introduction to Number Theory, Springer-Verlag London, 2005. Loring W. Tu, An Introduction to Manifolds, 2nd ed., Springer, New York, NY, 2011. Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-552. Michael Artin, Allyn Jackson, David Mumford, and John Tate, Coordinating Editors, Alexandre Grothendieck, Notices of the AMS 51, 2016. Joe Harris and Ian Morrison, Moduli of Curves, Springer-Verlag New York, Springer Science+Business Media New York, 1998. Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley-Interscience; 1st edition (August 16, 1994), 1978. J.S. Milne, Algebraic Geometry (v6.02), www.jmilne.org/math/ , 2017. Glen E. Bredon, Sheaf Theory, Springer-Verlag New York, Springer Science+Business Media New York, 1997.
2024-05-09 21:35:41

Some thought of p-divisible groups and p-adic Hodge theory

The name "p-divisible group" is somewhat misleading, which in fact has another name "Barsotti-Tate group". A p-divisible group is not merely just a kind of group. lt is more general. In fact, a p-divisible group can be viewed as a tower of affine group schemes with some extra conditions. Historically, p-divisible groups were the main stimulus for p-adic Hodge theory. So l think that studying p-divisible groups is the key to study p-adic Hodge theory.However, today's p-adic Hodge theory is much more complicated. l failed to understand Fontaine rings in the past. But this won't suppress my interest in p-adic Hodge theory. For now, I'm still studying Peter Scholze's Perfectoid Space, which was published nearly ten years ago and has already obtained a lot of beautiful results. lf l have time, l will still try to study p-adic Hodge theory.----------This short articles was originally published at June 24, 2021.
2024-09-30 22:44:09

学代数几何需要懂得什么别的数学分支?

原本我以为微分几何跟代数几何仅仅是数学两个有关联的分支,结果是我之前肤浅了。随着对代数几何深入的学习了解,我发现代数几何跟微分几何也有很深的联系。因此我完全可以说微分流形的理论是深入学习代数几何的necessity,或许你懂抽象代数、交换代数,甚至同调代数,但是若你不懂一些manifold的理论,你完全没有机会去学习étale cohomology、Hodge theory等代数几何更深层次的理论。当然想要学习代数几何最高深、最先进的部分,仅仅懂abstract algebra、homological algebra、manifold是完全不够的。以我自己为例,我的方向是算术几何,这意味着你还需要懂elliptic curve、modular forms、$\ell$-adic representation、algebraic topology等更深层次的知识。还没完,你觉得你所学的东西就真的在研究的过程中用得上吗?在看书的过程中,你还得不停地看文献,就像定制一台机器一样定制自己所需要学习的知识,这样才能保证自己学到有用的东西,否则就是浪费时间,人的脑容量是有限的,用不上的东西时间长了就会忘记。很多人想做数学研究,结果却把大量的时间浪费在无谓的学习上,其实我更加提倡边做边学的做法,先找到个问题,然后尝试去做它,在做的过程中不断学习自己所需要的知识,这样效率是不是高很多呢。但说这么多都没用,很多人本身没有这么强烈的motivation,动机是前提,连最基本的动机都没有,谈再多的方法都没用。————————————————————本文原发布于2020年10月14日
2024-10-02 13:09:29

How to understand $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ ?

My question: It is known that $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ is defined to be $\bigcup_{n>0} \mathbb{Q}_{p}(p^{1/p^{n}})$, which means adjoining all $p$-power roots of $p$ to the mixed characteristic field $\mathbb{Q}_{p}$. However, I have problem understanding the symbol $\mathbb{Q}_{p}(p^{1/p^{n}})$. How can this relate to the $p$-power roots of $p$? Why in the symbol, the power of $p$ is $1/p^{n}$? I think that $\mathbb{Q}_{p}(p^{1/p^{n}})$ is a cyclotomic extension of $\mathbb Q_p$, where $p^{1/p^{n}}$ is the primitive $n$th root of unity. But it seems that this does not make sense. And I saw in other answers that $\mathbb{Q}_{p}(p^{1/p^{n}})$ is a ramified extension. Could anyone tell me where can I learn about $\mathbb{Q}_{p}(p^{1/p^{n}})$?Answer1: By definition, $\Bbb Q_p(p^{1/p^n}) \cong \Bbb Q_p[X]/\langle X^{p^n} - p \rangle$.Answer2: The notation $F(a^{1/d})$ means the field obtained by adjoining to $F$ a solution of $x^d-a$. This is just like $a^{1/2}$ being $\sqrt{a}$: very standard algebraic notation. The notation $p^{1/d}$ is a root of $x^d-p$, not $x^d-1$. A cyclotomic extension of $F$ could be written as $F(1^{1/d})$ to mean you are adjoining a $d$th root of unity, I suppose. Why do you think $p^{1/d}$ (for $d = p^n$, say) should mean a root of unity rather than a $d$th root of $p$?This question was asked on May 29, 2021, when the author was in his freshman year and was confused about how to get started with Peter Scholze's Perfectoid geometry.
2024-10-25 18:53:46

评审8年终获发表,数学天才望月新一证明abc猜想,全球只有十几个数学家读懂但争议未消

abc猜想,数学界悬而未决的重要猜想,它的证明过程经过8年的同行评审,终于要在期刊上发表了。论文作者是日本的天才数学家望月新一,他33岁起就在京都大学担任数学教授。这一次望月新一的证明,全篇超过600页,2012年就已发表,但足足经过了8年的同行评审才通过,期间开过多次研讨会——但依然有很多数学家无法理解。据说,这篇论文全球只有十几位数学家深入研究了证明过程。许多数学家根本无法指出证明过程是对是错,因为根本看不懂。4月3日,日本京都大学召开了新闻发布会,宣布望月新一证明了它。包括Nature等在内的权威科学传媒组织,也这一重要进展进行了报道。望月新一没有出席昨天的发布会,他的另外两位同事说,当他知道自己的论文被接收,终于松了一口气。多年来他从未在公众场合露面。但也不是没有争议,因为当初接收论文的期刊——日本的PRIMS,主编正是望月新一本人。如果他的证明是正确的,那么将彻底改变数论。同时也正因为如此,才有了学界长达8年的争论。什么是abc猜想?abc猜想,最初由法国数学家约瑟夫·奥斯特莱和大卫·马瑟,在1985年提出。并且一经提出,abc猜想就成为数论领域的重要猜想之一。只是和哥德巴赫猜想不同的是,向大众说明abc猜想本身,就是一个复杂的过程。大概如下:有三个互质正整数a、b、c,且c=a+b。所谓互质,即它们的最大公约数是1。因此8 + 9 = 17、5 + 16 = 21是符合条件的一组数字,但是6 + 9 = 15不是。接着,我们把abc的质因数都提取出来,比如5、16、21的质因数是5、2、3、7,这些质因数相乘的结果为210,这个数比原来的三个数大得多。又比如5、27、32,它们的质因数是5、3、2,相乘结果为30,就比32小。但第二种情形极为罕见。如果a和b都是小于100的数,我们能找到3044个符合条件的abc组合,其中只有7组满足第二种情形。而abc猜想要证明的,就是符合第二种情形的abc组合,只有有限个。数学家们把abc的质因数乘积记作rad(abc)。用严谨的数学语言来表述就是:对于任何ε>0,只存在有限个互质正整数的三元组(a, b, c),c = a + b,使得:c > rad(abc)1+ε费马大定理迎刃而解在人类短期内没法证明的abc猜想的情况下,科学家们想到了一个办法,就是用计算机暴力解决,从小到大依次寻找符合abc猜想第二种情形的组合。由此衍生出了一个分布式计算项目ABC@Home,就是通过全球各地的电脑穷举计算符合abc猜想条件的三元数组。到2014年5月,人们已经验证了2380万个组合。虽然有无限个例子或反例不能解决abc猜想,但是数学家希望借着该计划发现的三元数组的分布模式。之所以花费大量计算资源去验证,是因为abc猜想在数学界有着重要意义。和黎曼猜想一样,很多数学领域后续的一些假设都依赖于前者。如果前者得到证明,后者就能轻易得出。abc猜想的形式是a+b=c,著名的费马大定理形式是xn+yn=zn,二者非常相似,实际上二者也是强关联。如果abc猜想为真,那么费马大定理也可以轻松证明。当年费马一句“空白太小写不下证明”,让这一问题从1637年一直拖到1995年才得以解决。而通过abc猜想来证明费马大定理的方法,真的能让空白处就能写下证明过程。所以望月新一这一次,真的做到了吗?证明过程极具争议望月新一发表了4篇论文来证明这一猜想,他把自己的研究成果叫做“宇宙际Teichmuller理论”。按照望月新一的说法,该理论是用于椭圆曲线数字场的Teichmuller理论的算术版本,里面包含了像霍奇剧院(Hodge theaters)这样奇怪的名字。望月新一的理论并未得到学界广泛认同,600多页的证明被来自德国波恩大学的两位德高望重的数学家质疑。2018年菲尔兹奖得主、马普所数学研究所所长Peter Scholze说:“我认为abc猜想仍未解决,任何人都有机会证明这一点。”Scholze和他的同事Jakob Stix还曾发表一篇报告,指出在望月新一第三篇论文中“推论3.12”证明过程从根本上来说是有缺陷的。而该推论对abc猜想的证明至关重要。和其他部分引理的证明不同,3.12的证明尤其长,总共有9页。Scholze认为这9页证明达到了根本无法遵循逻辑的地步。Scholze在2018年到京都大学进行了为期一周的访问,与望月新一探讨了这个问题,但双方谁也说服不了谁。Scholze说:“我认为,除非望月新一进行一些非常实质性的修改,并更好地解释这一关键步骤,否则不应该将其视为证明。”“我真的没有看到一个使我们更接近abc猜想证明的关键思想”,Scholze还补充道。望月新一的论文也引起了陶哲轩的关注,在当年论文发表的第一时间,陶哲轩就在个人博客中谈到的自己看法,并给出了另一种启发式证明方法。望月新一研究领域并不是陶哲轩的擅长,所以他之后一直回避对此评论。这篇论文被期刊接收,并不是abc猜想的终点,也无法让数学家站到望月新一这一边,新的争论还会继续下去。关于望月新一最后,简单介绍一下这位日本天才数学家。望月新一,1969年出生于日本东京都,5岁随父母前往纽约,16岁就进入普林斯顿大学,3年读完本科,23岁获得博士学位,33岁成为京都大学教授。他现在是京都大学数理解析研究所教授。研究数论,包括算术几何,霍奇理论和远阿贝尔几何。有意思的是,还有人曾猜测,望月新一就是比特币发明人“中本聪”。不过这种猜测的疑点很多,因为比特币用到的密码学不是望月新一的研究方向,而且他作为一个纯粹的数学家,对现实世界的问题也不太关心。最后的最后,如果你对望月新一这一abc猜想证明有其他看法,也欢迎告诉我们。参考资料: https://www.nature.com/articles/d41586-020-00998-2 https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/ https://futurism.com/the-byte/mathematicians-shocked-paper-published 本文转自微信公众号量子位
2024-11-05 12:02:14

望月新一与他天书般的论文,展现了纯数学与我们的距离

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。David Parkins不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenko。Fesenko立即将论文下载下来,开始阅读。但是很快他就“如坠云雾”之中。他说:“简直不可能理解那些论文。”Fesenko给望月新一所在算术几何领域的几位顶级专家发了邮件,有关该证明的消息迅速传开。没过几天,数学博客和在线论坛开始热烈地讨论起来。但是对于许多研究人员来说,最初的兴奋很快变成怀疑。所有人,甚至那些和望月新一专业领域最为接近的人,也像Fesenko一样感到困惑不已。为了完成证明,望月新一开创了一个新的学科分支——一个即使按照纯数学标准来看也极其抽象的分支。在论文公开几天后,威斯康星大学麦迪逊分校的数论理论家Jordan Ellenberg在自己的博客上写道,“你会感觉自己好像是在看一篇来自未来或外太空的论文。”3年过去了,望月新一的证明依然是一个数学谜团,既没有被驳斥,也没有被广泛接受。据望月新一估计,一名数学专业研究生大约需要十年时间才能理解他的研究,Fesenko则认为即使是一名算术几何专家,可能也需要500个小时才能弄懂。到目前为止,只有4名数学家表示他们能够读懂全部证明。望月新一本人也为他的证明平添了几分神秘色彩。虽然他可以说一口流利的英语,但是截至目前他只在日本用日语谈论了自己的研究,而且拒绝了到其它地方发表演讲的邀请。他不接受记者采访;多个采访请求都没有得到回应。他会回复其他数学家的电子邮件,也不拒同事来访,但是他仅有的公开信息就是他个人网站上零零碎碎的一些内容。2014年12月,他写道,若要理解他的研究,“研究人员需要摒弃他们维持多年的旧有的思维模式”。在比利时安特卫普大学的数学家Lieven Le Bruyn看来,望月新一的这种态度显得目中无人。今年早些时候,他在博客上写道,“是不是只有我一人觉得望月新一是在藐视整个数学界”。现在,数学界正在尝试解开这个问题。2015年12月,亚洲以外首个有关望月新一证明的研讨会在英国牛津举行。望月新一不会亲身到场,但是据说他愿意通过Skype回答研讨会上提出的问题。组织者希望这次讨论能够激发更多数学家花时间去熟悉望月新一的观点——希望改变对望月新一的态度。望月新一在其最新的验证报告中写道,他的理论之于算术几何“恰似纯数学之于人类社会”。他在向数学界传达自己的抽象研究时遇到困难,而数学家群体在向数学界以外的广大群体传达其研究成果时也常常面临挑战,二者何其相似!核心所在abc猜想涉及a + b = c型的数值表达式。它存在几个略有不同的版本,关系到能除尽a、b和c的质数。每一个整数都能以独一无二的形式表示为一连串质数的乘积;例如15 = 3 × 5,或84 = 2 × 2 × 3 × 7。原则上,a和b的质因数与二者之和c的质因数没有关联。但是,abc猜想将它们联系了起来。abc猜想的假设大致而言指,如果大量小质数能除尽a和b,那么只有少量大质数能除尽c。1985年,法国数学家Joseph Oesterlé在德国的一次演讲中,无意间谈到一类特别的方程式,首次提出来这种可能性。当时的观众席中坐着目前在瑞士巴塞尔大学任职的数论理论家David Masser,他意识到这个猜想的潜在重要意义,之后以一般形式将其公之于众。现在,这个猜想被归功于他们二人,并且常常被称为Oesterlé–Masser猜想。几年后,哈佛大学的一位数学家Noam Elkies意识到,如果abc猜想是真的,那么将对丢番图方程的研究产生深刻影响。他发现如果abc猜想得到证明,那么将一举解决大量著名的未解丢番图方程。因为,它可以给方程解的大小做出明确限制。例如,abc猜想或许可以表明丢番图方程的所有解都必须小于100。为了找到正解,人们所要做的就是代入0到99之间的每一个数字进行验证。而没有abc猜想的话,就需要代入无限多的数字。Elkies的研究意味着abc猜想可能超越丢番图方程史上最重要的突破:证实美国数学家Louis Mordell在1922年提出一个假设——大部分丢番图方程要么无解,要么只有有限数量的解。1983年,时年28岁的德国数学家Gerd Faltings证明了该猜想,三年后因此获得了数学界人士梦寐以求的菲尔兹奖。但是Faltings说,如果abc猜想被证实,你不仅知道有多少解,“还可以直接将它们全部列出来”。Faltings在证明Mordell猜想后不久,便开始在普林斯顿大学任教,很快他的轨迹就和望月新一的产生了交叉。1969年,望月新一出生于东京,在他小时候一家人就搬到了美国,他在那里长大。他上了新罕布什尔的一所精英高中,早早地就展露出过人的天赋,不到16岁就成为普林斯顿大学数学系的一名本科生。很快,富有创造性的思维令他成为一个传奇,他开始直接攻读博士。认识望月新一的人都说他具有超自然的全神贯注的能力。“从他还是学生的时候起,每天从早到晚都在学习。”牛津大学数学家金明迥说,他在普林斯顿大学认识了望月新一。金明迥记得以前在参加完一场研讨会或专题会后,研究人员和学生一般会一起出去喝几杯,但是望月新一不会去。“他并不是天生内向的人,只是全身心地投入到了数学研究中。”Faltings是望月新一本科毕业论文和博士论文的导师,他看到了望月新一的过人之处。“很明显他天资聪颖。”他说。但是,做Faltings的学生并不是一件容易的事。“Faltings是最令学生生畏的一位老师。”金明迥回忆道。他能敏锐地发现错误,即使是知名的数学家,在和他交谈的时候,也常常会感到无所适从。Faltings的研究对美国东海岸大学里面的许多年轻数学家具有非常大的影响。他的专业领域是代数几何,从20世纪50年代起,因为Alexander Grothendieck——20世纪最伟大的数学家,代数几何转变成一个高度抽象且理论性的领域。“与Grothendieck相比,”金明迥说,“Faltings没有太多耐心去从哲学角度思考数学。”他的数学风格表现为需要“大量的抽象背景知识,但是同时也以解决实际问题为目标。望月新一关于abc猜想的证明正好符合这一点”。心无旁骛博士毕业后,望月新一在哈佛待了两年,然后在1994年他25岁的时候回到了出生地日本,加入RIMS。金明迥说,虽然望月新一在美国生活了多年,但是“他在某些方面并不适应美国文化”。不仅如此,在异国长大可能加重了他作为少年数学天才的孤独感。“我认为他确实受了一些苦。”RIMS不要求它的职员给本科生授课,望月新一在此如鱼得水。“在20年的时间里,他可以不受外界过多干扰,一心一意地开展自己的研究。”Fesenko说。1996年,望月新一因为解决了Grothendieck提出的一个猜想而在国际上声名鹊起;1998年,他受邀在柏林国际数学家大会上发言,名气更胜从前。虽然备受推崇,但是望月新一却逐渐淡出主流视野。他的研究越来越抽象,同行们越来越难理解他的论文。从21世纪的头几年开始,他不再参加国际会议,同事们说他几乎没有再离开过京都。“连续多年不靠别人,一个人专心致志做研究需要投入非同一般的热情。”斯坦福大学数论理论家Brian Conrad说。不过,望月新一实际上还是和数论同行专家们保持着联系,他们知道他的最终目标是abc猜想。他几乎没有竞争对手:大部分数学家都认为这个问题非常棘手,基本都敬而远之。2012年初,关于望月新一快要完成证明的消息传开了。然后就出现了8月的新闻:他把论文发在了网上。9月,Fesenko成为日本之外第一个与望月新一谈论其默默公开的这项研究成果的人。Fesenko本来是要拜访玉川安骑男,顺道也见了望月新一。二人在一个周六见面了,地点在望月新一的办公室。里面很宽敞,书籍论文都摆放得井井有条,从办公室望出去,可以看到附近的大文字山。Fesenko说那是他“一生中见过的最整洁的数学家办公室”。两人在皮沙发上坐下后,Fesenko开始询问有关望月新一研究成果的各种问题,并讨论后续可能发生的情况。Fesenko说他提醒望月新一要以俄罗斯数学家、拓扑学家Grigori Perelman(格里戈里·佩雷尔曼)为戒:2003年,Perelman解决了世纪难题庞加莱猜想,一举成名,但是之后他逐渐退隐,日渐疏远朋友、同事和外界。Fesenko认识Perelman,认为Perelman和望月新一的性格迥然不同。众所周知,Perelman社交能力很差(而且不修边幅),但望月新一在众人眼里却是一个擅长表达且待人友好的人,只不过对工作以外的生活非常保密。正常来说,一项重大证明公开后,数学家会拿来阅读——一般只有几页——而且可以理解其整体论证方法。偶尔会有些证明更长一点、更复杂一点,前沿专家可能需要花上好几年的时间才能对其进行充分评估,判断它是否正确。Perelman关于庞加莱猜想的研究就是这样被接受的。即使是像Grothendieck的那样高度抽象的研究,专家们也能够将其大部分的新观点与自己所熟悉的数学对象联系起来。只有当所有疑惑都已廓清,期刊才会将证明发表出来。但是,几乎每一个研究望月新一证明的人,最后都发现自己一头雾水。有些人感到茫然无措:望月新一在描述他的一些新的理论说明时,使用的语言近乎天书:他甚至将他创造的新领域称为“宇宙际几何”。“一般而言,数学家都是非常谦逊的,不会声称自己所做的是一场关系全宇宙的革命。”巴黎第六大学的Oesterlé说。他在验证望月新一的证明,但是没有取得什么进展。因为望月新一的证明明显脱离了过去已有的东西。望月新一尝试从数学的集合论基础(许多人所熟知的维恩图)入手,彻底革新数学。一直以来,大部分数学家都不愿意花费时间去理解他的研究,因为他们看不到什么明显回报:很难看出望月新一创建的新理论可以用于计算。“我试着看了一些内容,之后放弃了。我看不懂他的研究。”Faltings说。2014年,Fesenko对望月新一的工作进行了详细的研究,并于当年秋天再次去RIMS拜访了望月新一。他说他已经证实了望月新一的证明。(另外三名表示已经证实该证明的数学家也在日本和望月新一一起工作了很长时间。)按照Fesenko的说法,宇宙际几何的核心要义是用全新的眼光看待整数——暂不考虑加法,将乘法结构看成一种可延展可变形的结构。这样一来,标准乘法就只是结构家族中的一个特例,就像圆形是椭圆的一个特例一样。Fesenko说望月新一自比为数学大师Grothendieck——这并不过分。“过去,我们有的是望月新一之前的数学;现在,我们有的是望月新一之后的数学。”Fesenko说。但是到目前为止,寥寥几个能够理解望月新一研究的人却很难向他人解释。“每一个尝试这么做的人我都认识,他们非常睿智,但每次眼见着快要成功了,却都无疾而终。”一位不愿具名的数学家说。他说这种情况让他想起了英国喜剧团巨蟒组(Monty Python)的一个故事,一位作家写出了全世界最好笑的笑话。每一个读过的人都笑得丢了性命,因此无法将笑话讲给别人听。Faltings认为这就是问题所在。“你有好的想法还不够:你还要能够向别人解释清楚。”他说如果望月新一想要他的工作能够被人接受,就应该与人进行更多的沟通。“一个人有权利我行我素。”他说,“如果他不想传播自己的理论,他就没什么义务。但如果他希望被认可,就必须做出妥协。”结局不定对于望月新一而言,或许会很快迎来一些转机,美国克雷数学研究所将在牛津举办一场万众期待的研讨会,预计包括Faltings在内的一众业内重要人物都将出席。金明迥和Fesenko是会议的组织者,他说几天的演讲不足以阐明全部理论。但是,“希望在会议结束后,有相当一部分人能够愿意投入更多精力来研究这个证明”。大部分数学家都预计还需要很多年才能得出确定结论。(望月新一说他已经把论文投给期刊了,大概仍在评审中。)研究人员希望有一天能够有一个人不仅自己懂,还能解释出来让别人懂。问题是,很少有人愿意成为这样的人。展望未来,研究人员认为未来的未解问题可能不再会像这样复杂棘手。Ellenberg指出,在新的数学领域,定理的陈述一般都是简单的,而且证明非常简短。现在的问题是望月新一的证明是否会像Perelman的那样被接受,还是走向另一种结局。一些研究人员以普渡大学著名的数学家Louis de Branges为例,提醒应该保持谨慎态度。2004年,de Branges声称证明了黎曼猜想——许多人视之为数学领域最重要的一个未解问题。但是,其他数学家对此表示怀疑;许多人说de Branges的理论不符合传统,而且写作风格怪异,他们没有兴趣细究;很快该证明便从人们的视线中消失。Ellenberg认为对于望月新一的研究,“不能用一刀切的方式来评价”。即使他关于abc猜想的证明不正确,他的方法和理念仍有可能渗透进数学界,并有可能在其它某些方面发挥作用。“根据我对望月新一的了解,我真的认为他的论文里面极有可能隐藏着某种精彩或重要的数学内容。”Ellenberg说。不过他也补充表示不排除结局走向相反的方向。“我认为如果我们简单地把它遗忘了,那将是一件不幸的事。令人悲哀。”ⓝNature|doi:10.1038/526178a原文发布在2015年10月7日的《自然》新闻专题上原文作者:Davide Castelvecchi本文转自 https://zhuanlan.zhihu.com/p/43348594 。点击右边标题阅读英文原文:The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof
2024-11-05 11:51:39
Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved