科普科普·

有“0元素”吗?零号元素究竟是什么?

发布时间:2024-08-29 11:08:35阅读量:38
普通文章
转载请注明来源

元素周期表你能背诵几位?

如果你让一位初中同学背诵元素周期表,他通常会这样回答:“氢氦锂铍硼碳氮氧氟氖钠镁铝硅磷硫氯氩钾钙......”。

没错,元素周期表是从氢开始的,氢是宇宙中含量最多的元素,也是元素周期表的一号元素,氢的原子核中有一个质子。质子的数量是元素拥有不同性质的决定因素,所以原子核中质子数量被称为原子序数。

原子核中通常也含有一个或一个以上的中子,氢的同位素氕除外,氕的原子核只有一个质子,没有中子。那么问题来了,宇宙中存在没有质子只有中子的元素吗?

氢是元素周期表中的一号元素

零号元素的争议

“0元素”这个词是德国物理学家安德烈·冯·安德罗波夫在1926年发明的,尽管当时还没有中子的概念,但安德罗波夫认为这种元素的质子数量有可能比氢还要少,所以他把它放在了元素周期表氢元素的前边,称之为零号元素。

主流科学家们认为不存在质子的元素它其实就是中子,只有带正电的质子才能吸引电子从而构成一种稳定的物质,而单一的中子并不能称其为元素。所以在正式的科学论文中,你很难找到“0元素”这样的表述,反倒是科幻小说中反复提及,它代表着宇宙中密度极大的中子星。

中子星

安德罗波夫最开始将零号元素放在元素周期表中氢元素的上方,后来的科学家认为这样的排列不严谨,我们知道元素周期表的第一列堿金属的最外层电子数为1,零号元素没有质子,所以它的外层不应该有电子绕核运转,所以将其挪到了氦元素的上方。

短命的自由中子

通常情况下,中子都被严格束缚在原子核中,通过强力作用与质子绑定在一起,一旦它获得了自由,便成了“短命鬼”。

自由中子会发生β衰变,变身为质子,同时释放一个电子和一个反电子中微子。自由中子的平均寿命大约是14分42秒,其半衰期只有10分11秒。

质子与中子的区别

自由中子的衰变特性是天生的,因为中子是由两个下夸克和一个上夸克组成,在脱离原子核强相互作用力的束缚之后,其中一个下夸克会在弱相互作用力的主导下改变自己的“味道”,从而变成更轻的上夸克,在这个过程中它会释放一个电子和一个反中微子。当夸克的电荷发生改变后,中子就从对外不带电变成了对外带一个正电荷的质子了。

中子衰变成质子很容易,但反过来将质子变成中子却是很难的,这需要消耗很大的能量。质子很稳定,这就是我们可以找到许多氢原子和自由质子,却很少发现自由中子的原因。

质子和中子之间的核力相互作用

中子星是自由中子的巢穴

博学的你肯定很早就想到了中子星。这是宇宙中广泛存在的一类星体,它是那些比太阳更大的恒星死亡、坍塌后形成的致密星球。当大质量恒星燃尽了它核心的氢和氦,便走到生命的尽头,由于内部的能量无法支撑外部强大的重力,恒星的内核会在瞬间发生剧烈坍缩,同时释放巨大的能量,这便是超新星爆发,中子星便是超新星的残骸。

中子星

由于在10~20公里半径的范围内集聚了大约2个太阳质量的物质,强大的压力会超过钱德拉塞卡极限,从而将电子压入到质子中,使期变成中子。

中子星中有大量的自由中子,但中子星也是分层的。它的内核由于压力极为巨大,中子被压成了更重的超子;超子核心的外边是自由中子层;中子星的最外层是质子、电子和中微子构成的表层,这些都是中子衰变后的产物。

中子星分层

有人将中子星视为一个巨大的原子核,甚至称它就是0号元素,这是不正确的。无论从宏观还是微观的角度来分析,中子星都是一个天体而不是单一的元素。中子不过是中子星的一个组成部分而已。

除了遥远的中子星外,我们周围一些放射性物质比如U235或Pu239在裂变过程中也能产生出高能量的中子,人们利用中子进行链式反应以进行核能发电,同时也利用核裂变产生大量中子制造核武器,比如原子弹、氢弹和中子弹。中子弹是一种小型化的战术氢弹,中子不带电荷,大量热中子可以轻松穿透坚固掩体,杀伤里边的人员,达到杀人不见血之目的。

中子是链式反应的重要传递者

中子到底能不能被称为0元素?

我们不能根据某些元素存在时间的长短来判断它的元素属性,比如砹213的半衰期仅有125纳秒,相比之下自由中子的寿命要长多了呢!

2012年,科学家第一次观测到在没有质子的情况下结合在一起的两个中子 n,尽管它的半衰期仅有10秒,但这足以证明中子并非绝对孤立存在。

中子整体不带电荷,所以它不能拉住电子,令电子围绕自己旋转从而形成电子壳层。严格地说,中子不具备原子核最基本特征——可以稳定拥有电子,这是它与其它所有元素不同的地方,也是它被踢出元素周期表的重要原因。有实验发现中子可以与电子以离子(中子-电子对)的形态出现,因为尽管中子对外不带电,但它表面存在微小的电荷分布差,所以电子可以受轨域效应束缚在中子附近运动。问题是这种束缚力极其微弱,电子很容易就被拿走,所以中子也不能因此与其它原子结合形成化学键。从这个角度看,中子是完全惰性的,把它放在惰性气体这一列也不算冤枉它。

0号元素应处的位置

元素周期表里没有零号元素的位置,到目前为止科学文献中也极少出现“0元素”一词,这并不表明中子这种物质注定继续孤独下去。“0元素”不代表“没有元素”,或许未来有一天,当科学界真正了解了中子,通过发挥创造性的思考,或许会将中子应得的位置还给它,这就是零号元素——“Nu”。

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

cover

原创文章被检测为AI创作,AI检测还靠谱吗?

自从GPT火了以后,网络上的AI内容就变得泛滥了,刚开始还能轻松辨别哪些是AI的(一眼AI),哪些是人写的。现在这一两年里,随着生成式AI不断深入人心,AI内容变得更加泛滥了,并且经过这段时间技术的发展,AI生成的内容越来越真假难辨😢😤,有些AI生成的内容需要仔细辨别才能看出端倪。更可怕的是,道高一尺魔高一丈😔🙁,所谓的AI检测技术发展远远比不上AI生成技术的发展。AI生成的内容跟人越来越像,甚至有时候比人写的还要好,而人写的内容呢,相对的也就越来越AI化了😅。因此目前的AI检测会出现把人写的认定为AI写的荒谬事情。这也就意味着潘多拉魔盒已经彻底打开,AI内容与人的内容的界限开始变得模糊,所有的内容都变得真假难辨,恐怕这样下去人会彻底活在虚幻的世界里😭。以下为AI检测的结果我们检测用的是为什么说外国教材好?国外教材与国内教材的区别与 Djano云服务器部署 uwsgi+nginx+https部署这两篇文章。使用GPTZero进行检测,其他检测工具就不列举说明了,感觉用哪个AI检测结果都不会有太大差别。其实是别的AI检测都太不靠谱了😄,Undetectable.ai感觉就无论给它什么结果 ...

[antd: Message] You are calling notice in render which will break in React 18 concurrent mode. Please trigger in effect instead.

I'm getting this error when using MessageWarning: [antd: Message] You are calling notice in render which will break in React 18 concurrent mode. Please trigger in effect instead.Here is my code:import { message } from 'antd'; export default function Page() { const [messageApi, contextHolder] = message.useMessage(); const res = await fetch("/api/...", { method: "POST", }); if (!res.ok) { messageApi.error("Error! Fail to login!"); } return ( <Home> ... </Home> ) }

逻辑回归算法介绍

逻辑回归是一种用于二分类和多分类任务的机器学习算法。尽管名字中包含“回归”一词,但它主要用于分类,而不是预测连续值。逻辑回归通过构建一个线性模型,并通过非线性函数将其映射到一个概率空间,从而实现分类。以下是逻辑回归的主要特点和工作原理:线性模型:逻辑回归首先构建一个线性模型。设 (x_1, x_2, \ldots, x_n) 是输入特征,(w_1, w_2, \ldots, w_n) 是权重,(b) 是偏置,那么线性组合可以表示为: [ z = w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n + b. ]Sigmoid函数:为了将线性模型的输出转换为概率,逻辑回归使用sigmoid函数,也称为逻辑斯蒂函数。该函数可以将任意实数映射到0和1之间,定义如下: [ \sigma(z) = \frac{1}{1 + \exp(-z)}. ]输出概率:通过sigmoid函数,线性模型的输出被转化为概率。对于二分类任务,这个概率可以解释为样本属于某个类别的概率。例如,如果我们预测输出为1的概率是0.7,那么预测输出为0的概率就是0.3。 ...

cover

浅谈《天国:拯救》中的骰子游戏

原链接: https://zhuanlan.zhihu.com/p/386924079?utm_campaign=shareopn&utm_medium=social&utm_psn=1806094671581167616&utm_source=wechat_session 正文:《天国:拯救》是由战马工作室制作的中世纪RPG游戏,根据1403年发生的真实历史改编。本作的故事发生在中世纪时,匈牙利之王与瓦茨拉夫四世内战的波西米亚,《天国:拯救》的故事是根据真实历史改编的。随着贤君查理四世驾崩,神圣罗马帝国陷入了战争、腐败与混乱。瓦次拉夫,查理四世的儿子,却沉迷荒淫之事而不理朝政。瓦茨拉夫不满的宗亲贵族最后只能求助于瓦茨拉夫的皇兄——匈牙利之王,西格斯蒙德。但西格斯蒙德最后采用了极端的方式,绑架国王,逼其退位,趁乱夺权,其率部队大举进攻波西米亚,并侵蚀国王盟友的领地。在这乱世中,铁匠之子亨利在城镇斯卡里茨和父母过着平凡而快乐的生活,但这平静生活被一群库曼人雇佣军所打乱,他们收到了西格斯蒙德的亲令,掠夺并烧毁了城镇,在这次混乱中,亨利是为数不多的逃过这场浩劫的幸存者 ...

宇宙的最终结局会是什么?宇宙命运结局的三种假说

宇宙是如何诞生的?这个问题一直吸引着人类的好奇心。随着二十世纪六十年代,宇宙微波背景辐射的发现,科学界普遍认为,宇宙起源于大约138亿年前的一次大爆炸。然而,宇宙的最终结局又是怎样的呢?这是另一个让人类深思的问题。自人类诞生以来,人们就对死亡充满了恐惧,因为死亡意味着失去一切,无论是美好的事物,还是别的东西,全都将趋于“虚无”。虽然人类对死亡非常恐惧和厌恶,但是它似乎是宇宙中的一道铁律,目前仍然没有破解和逃脱的方法。不仅地球上所有的生物都难逃灭亡的结局,就连宇宙本身或许也不是永恒存在的,它也许会在遥远未来的某天迎来自己的终结,这已成为科学界公认的事实。关于宇宙的最终结局,科学家们提出了多种假说。其中一个是“大撕裂”理论,随着科学的发展,科学家们又提出了另外两种关于宇宙最终命运的假说:热寂和大坍缩。本期内容我们就来聊聊这个话题。1. 大撕裂假说图片来自网络宇宙的命运一直是天文学家争论不休的话题。有些人认为宇宙将永远存在,而另一些人则认为它最终会走向毁灭。如果你是一个科学家,你可能会对宇宙的未来感到担忧。因为有一种假说告诉我们,宇宙的结局可能是一场灾难性的大撕裂!大撕裂理论认为,宇宙的膨胀 ...

物理学家打造史上最难迷宫:极易碎成微粒

代达罗斯本可以从英国和瑞士的物理学家团队那里获取灵感。他们从分形几何和国际象棋的策略游戏中汲取原理,创造出了他们所说的有史以来最难的迷宫。在英国布里斯托尔大学物理学家菲利克斯·弗利克的带领下,这个研究小组在阿曼-比克尔平纹图案中产生了被称为汉密尔顿循环的路线,创造了复杂的分形迷宫。他们说,这些分形迷宫描述了一种被称为准晶体的特殊物质形态。它的灵感来自于一个骑士在棋盘上的移动。“当我们观察我们构建的线条的形状时,我们注意到它们形成了令人难以置信的复杂迷宫。随后迷宫的大小呈指数级增长,且数量无限,”弗莱克解释说。“在骑士之旅中,棋子(向前跳两个格,向右跳一个格)在回到起始方格前只访问一次棋盘的每个方格。这是‘汉密尔顿循环’的一个例子,即通过地图的循环只访问所有站点各一次。”准晶体是自然界中极其罕见的物质形态,是固体中有序和无序晶体的奇特混合。在有序的晶体中 —— 如盐、钻石或石英 —— 原子以非常整齐的模式排列,并在三维空间中重复。你可以将这个晶格的一部分叠加到另一部分上,它们就会完美地匹配。无序的或无定形的固体是指其中的原子都是乱糟糟的,包括玻璃和一些通常在地球上找不到的冰。准晶体是一种 ...

cover

为什么说外国教材好?国外教材与国内教材的区别

首先,不是所有国外的教材都是好的,也不是所有国内的教材写得不好。但整体上看,绝大多数的国外大学教材,要比国内的要好,而国内的教材好的屈指可数。国内的有些教材往往写得更加冗长和复杂,让人看得云里雾里、似懂非懂。而且封面简陋,排版一般,给学生的体验不太好,编者可能心里并没有将学生放在平等的位置上。这里就不具体列举国内哪些教材不好了😅😅😅。。国外的教材,往往有精美的封面,内容写得清晰明了,有舒服整齐的排版,有的时候会配上精美的图片或图案。国外的教材给人的感觉是大制作,把学生放在重要的位置,阅读体验非常好。有些比较基础的教材,比如说微积分,看教材能感觉到作者想方设法让你能学懂,巴不得背你上去。老师的本职应该是服务学生,如果没有学生来上学,那么学校也没有开的必要了,老师也会丢掉工作。因此,国内外的教育环境差别,通过教材也能撇到冰山一角。以下以国外的《大学物理》教材为例:精美的封面舒适的排版精美的图案清晰详细的内容可见,如果我们上课的时候,能够用上这样的教材,也不至于这么苦逼来啃教材,而是享受阅读。然而,国外的教材大制作,价格往往比国内的教材要贵得多,一本教材换成人民币可能要几百块。但国外的网上教 ...