Vector space (Linear space)

Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrices, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear equations.

1. Definition

A vector (linear) space over the field $k$ is a set $E$ of elements $x, y, ...$ called vectors with the following algebraic structure:

I. $E$ is an additive abelian group; that is, $E$ is equipped with a mapping denoted by $$E\times E\rightarrow E, (x, y)\mapsto x + y $$

such that the following axioms are satisfied:

(1) $(x+y)+z=x+(y+z)$ (associative law)

(2) $x + y = y + x$ (commutative law)

(3) there exists a vector $0$ such that $x+0= 0+x=x$ for every $x\in E$. Such a vector is called the zero-vector of $E$.

(4) To every vector $x$ there is a vector $-x$ such that $x+(-x)=0$.

II. $E$ is also equipped with a mapping denoted by $$k\times E\rightarrow E, (\lambda, x)\mapsto \lambda x$$

and satisfying the axioms:

(5) $(\lambda\mu)x=\lambda(\mu x)$ (associative law)

(6) $(\lambda+\mu)x=\lambda x+\mu x$

$\lambda (x+ y)=\lambda x+\lambda y$ (distributive laws)

(7) $1 \cdot x = x$ ($1$ unit element of $k$)

$k$ is called the coefficient field of the vector space $E$, and the elements of $k$ are called scalars. Thus the mapping $k\times E\rightarrow E$ defines a multiplication of vectors by scalars, and so it is called scalar multiplication.

Related

大学数学颠覆惯性思维系列之向量可以没有方向

大学数学颠覆惯性思维系列之向量可以没有方向。线性代数有个东西就做向量空间,向量空间有两种封闭的运算(加法和数乘)。只要是向量空间里面的元素都叫做向量vector,我管你有没有方向direction。只要一个集合里的元素满足下图的那些公理,它都能叫做向量。我们高中所学的向量严格来讲叫做欧几里得向量(Euclidean vector)或者几何向量,它被定义为既有大小(magnitude)又有方向(direction)的一个有向线段,又或者说跟高深一点它是一个等价类(equivalence class)。总之高中所学的向量是十分狭义意义上的向量,并不是一般意义上的。为了方便理解,我举一个最trivial的例子。比如$\mathbb{R}$是$\mathbb{R}$上的向量空间,于是$\mathbb{R}$里的元素就被称为向量,显然$\mathbb{R}$里的元素就是我们之前所熟知的标量,但是它同时可以是一个向量。因此,数学里一样东西是不是向量跟它有没有方向并没有什么必然关系,标量同样可以是向量。PS:话说高中时期的标量定义也很狭义,在一般意义上,标量就是向量空间的系数域里的元素。但这也不影响我上面的结论:向量跟方向没啥关系,标量可以是向量。——————————————————————本文原于2020年8月8日 01:02发布于QQ空间评论:标量跟向量在高中也不矛盾吧……回复:谁说不矛盾的,标量是没有方向的,向量是有向线段。评论:标量在高中阶段大多数时候是跟矢量对标的,是物理意义上啊,高三开始数学里标量几乎就不见了回复:这是你片面的见解,证明你连高中数学都没搞清楚。物理的那个矢量就是在运用数学的那个几何向量,它的英文都是vector,只不过是中文不一样罢了。而标量scalar,就是指只有大小的量,但这已经过时了。
2024-10-10 11:04:48
Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved