MathematicsMathematics·

Note on perfectoid spaces

投稿時間:2024-04-26 21:18:04閲覧数:566
学術記事
·
ノート
転載は出所を明記してください

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.

§1. Adic Spaces

Definition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.

§1.1. Morphisms of finite type.

The material can be seen in [SP] and [Hu1].

First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).

Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.

  1. We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.
  4. We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation.

Compared with the above definition, we reach to the case of adic spaces.

Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.

  1. We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.

Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.

§1.2. Unramified, smooth, and étale morphisms.

For definitions of morphisms of finite type and finite presentation, see §1.1.

First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).

Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagram

where $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.

The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.

Definition 1.5. Let $R\rightarrow S$ be a ring map.

  1. We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.
  2. We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.

Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.

Definition 1.6 ([Hu1, Definition 1.6.5]).

  1. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.
  2. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.

Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.

§1.3. Berkovich’s analytic spaces.

We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].

§1.3.1 Underlying topological spaces.

First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.

Definition 1.7.

  1. A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.
  2. A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.

Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.

Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.

Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.

Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.

§1.3.2 The category of analytic spaces.

Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.

If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:

(i) $\mathscr{M}(K)\in\Phi_{K}$.

(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.

(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.

(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.

(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.

Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.

The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).

From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.

Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.

Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.

Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.

§1.4. Rigid analytic varieties.

The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].

§1.4.1 $G$-topological spaces.

As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].

Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:

  1. If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.
  2. If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.
  3. If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.

Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].

We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.

Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists of

  1. a category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, and
  2. a set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.

Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.

We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.

§1.4.2 Presheaves and sheaves on $G$-topological spaces.

The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.

Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$

If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.

Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.

Morphisms of presheaves or sheaves are just natural transformations of functors.

Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.

Hence, we can define presheaves and sheaves on a $G$-topological space.

Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.

The following kind of Grothendieck topology is of special interest to us.

Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:

$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.

$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.

$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.

§1.4.3 Locally $G$-ringed spaces and analytic varieties.

The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.

Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.

Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:

(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.

(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.

We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.

Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.

A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.

Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.

Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.

In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.

Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:

(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.

(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.

§2. Almost mathematics

In this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].


References

  1. [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
  3. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
  4. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
  5. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
  6. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
  7. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
  8. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
  9. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
  10. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
  11. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  12. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
  13. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
  14. [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
  15. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
  16. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
  17. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
  18. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.
コメント欄
Ricciflows
Ricciflows

We apologize that this note has ended halfway because the author had quit mathematics😭😭

2024-08-14 13:54:14 返信

弦圈热门内容

Vue.js与Nuxt.js的区别

Vue.js与Nuxt.js都是前端的两个框架,Vue.js的项目属于单页应用,而Nuxt.js是基于Vue.js的服务端渲染通用框架。单页应用简称SPA,指的是前端代码将会在浏览器端被浏览器渲染。这对SEO优化不利,搜索引擎爬虫,会爬到空的网页。在Vue项目中,Vue会将JS交给浏览器渲染因此,结果是查看源代码没有别的东西,搜索引擎爬虫也基本只能看到这些,于是便直接下一个了,不会等你渲染。而服务端渲染,简称SSR,正是该问题的解决方案。前端代码会先在Node.js服务端渲染,然后再交给浏览器进行“二次渲染”。Nuxt.js则是Vue.js的SSR通用解决方案。前端代码经过服务端渲染后,能让搜索引擎爬虫看到完整的网站,同时查看源代码也能看到完整的代码。服务端渲染能提高网站渲染速度,降低白屏时间。同时,因为要同时运行Node.js服务端,这增加了服务器的负载。在Nuxt.js中,可以设置部分页面SSR,部分页面则是SPA,这样能降低服务器的资源耗费。对于静态网站,可以使用预渲染替代服务端渲染。预渲染,简称SSG,指提前渲染静态的html,提高页面响应。SSG一般适用于文档、个人博客等场景 ...

Linux是什么?Linux简介

1. Linux操作系统这个词严格来说是不对的,因为Linux其实只是个宏内核,Linux的各个发行版才算得上是真正的操作系统。相比于Windows和unix,Linux是免费开源的(虽然某些发行版是付费的),其实Linux就诞生于这样的背景下。Linus还是学生的时候,他的一个老师因为不想用付费的unix教学,因此自己写了一个操作系统,免费开源。而Linus根据这个操作系统,自行开发出Linux系统。值得一提的是,手机安卓系统用的是Linux内核,而苹果系统用的则是unix系统的一个分支。在电脑的操作系统中,目前市场占比最高的仍然是Windows系统,Windows的图形界面相较于Linux的重命令行对于用户更友善,更易使用。而在服务器的操作系统中,很多服务器都使用Linux系统,因为Linux占的内存更小,相较于Windows更轻,服务器跑久了也不容易卡。同时,服务器基本上都是纯命令行的,因为安装桌面占用空间,因此使用纯命令行的Linux更合适,据说当初Linus就是不喜欢图形界面的。其实Linux也是可以安装图形环境的(即桌面),如GNOME、Xfce,但是有些云服务器,比如我现 ...

cover

如果假设地心人存在,就能解释为什么至今没有发现外星人

说到地心人这类阴谋论(斯诺登揭秘:地下世界真相,地心人真的存在吗?),原本应该当乐子看看就算了。但是如果假设地心人存在,并且是比地表人更高程度的文明,那么就能得出一些有趣的结论,能够解释以下几个问题。为什么至今没有发现外星人👽?为什么人类一直向外太空发射信息,向外星人问好,却没有回应?为什么不怕黑森林法则?​说到底还是因为人类太弱小了,人类科技发展到如今的程度,对整个地球的探索都只限于薄薄的表面。人类对地下最深处的探索记录,于整个地球而言,只相当于在一个蛋壳表面划掉一层皮。毕竟连最外面的地幔都只是钻了个小口。我们对于地底结构的认识很大程度上依赖于地震波。在这里我们展开想象,既然地心人假设存在,且拥有高度发达的文明,那么应该有相应的手段在地底完全隐匿起来,不被外面的人发现,且不会被地震波所暴露,甚至想在地底藏匿,避免地震波的影响本来就是一个前提条件。​上面论述中有个关键词是隐匿、藏匿,为什么地心人要藏起来呢?答案很简单,因为黑森林法则。有句话叫做闷声发大财,如果一个人刚刚发展起来,那么他一定会尽量低调,不被厉害的人盯上,保全自己。同样,一个文明刚刚发展起来,到了一个相对可观的程度(比如超 ...

cover

世界婴儿危机,我们要被婴儿淹没了吗?

在遥远的未来,一场前所未有的婴儿危机席卷全球,仿佛人类即将被这些无辜的小生命淹没。而这场危机的源头,竟然源自一个被誉为“世界第一X大国”的泡菜国。泡菜国因“伟哥河”的奇特现象,人口暴增,幼儿园爆满,无数孩子提前继承了家产。樱花国因难民涌入,出生率飙升,政府欢呼经济新曙光,半场开香槟。然而,樱花国很快因人口爆炸而面临前所未有的社会压力。驻樱花米军被迫撤离,并“意外”留下氢弹发生爆炸,人们以为能暂时缓解这场危机,但出乎所有人意料的是,这些新生儿们似乎拥有了对核辐射的免疫力。他们组成了一支支无意识的婴儿大军,跨越海洋,向世界各地迁徙。鹰酱国成为了他们新的目标,面对这些无辜又强大的生命,人们陷入了恐慌和混乱。

cover

宇宙真的是被造物主设计出来的吗?如果是,那么造物主是怎么样的存在?

我们所生活的宇宙是一个运转极其严密而又无比神秘的空间,时间,物质构造的综合体。每当我思考宇宙时,总有一个疑问随之而来,也挥之不去,这个疑问就是;我们的宇宙如此运行严密,如此奇巧,这到底是怎么形成的?难道宇宙的背后真的有造物主吗?难道宇宙真的是造物主设计出来的吗?图片来自网络在古老的人们对上天的崇拜和神话传说,到宗教文化,其都把宇宙的诞生归结于造物主的创造。当科学从最初的研究造物主存在的可能性,发展至当下科学形成一整套逻辑严密的学科,造物主似乎依然没有漏出其真实面容。图片来自网络对于宇宙是否是造物主所为,这个疑问始终伴随着我,只要我一思考宇宙的终极问题时,这个疑问总是第一时间跳出来,而我却无法回避,于是我抛开其它问题,死磕这个问题。终于在我付出了近4000个日夜的思考,终于对这个问题有了属于我自己的答案。图片来自网络我认为,所谓的造物主,其真实身份应该是宇宙运行法则,而宇宙运行法则是由宇宙最原始的构成条件,在其构成条件各自所存在的自性之间的相互作用而形成的自然反应所形成的。因此我认为我们宇宙的造物主就是;宇宙的构成材料和宇宙的运行法则。宇宙运行法则就是宇宙的造物主,他存在在宇宙之中的每个 ...