科普科普·

太阳系最大的风暴:木星大红斑可能最终消失

Publié à 2024-08-27 11:40:54Vu 45 fois
Article ordinaire
Réimpression Veuillez indiquer la source

木星大红斑是一个巨大的漩涡,已经存在了至少 190 年。最近的研究表明,它有别于早期观测到的红斑,模拟探索了木星风是如何塑造它的。木星红斑一直在缩小,未来的研究将侧重于它的可持续性和未来可能的解体。

木星大红斑(GRS)是一个很容易看到的反气旋漩涡,也是太阳系中最大的此类漩涡,自从几个世纪前首次通过望远镜观测到它以来,科学家们就对它产生了浓厚的兴趣。最近的研究,包括模拟和太空任务数据,对它的形成、稳定性以及未来缩小或消失的可能性进行了调查。资料来源:NASA、ESA、A. Simon(戈达德太空飞行中心)和 M.H. Wong(加州大学伯克利分校)

木星大红斑(GRS)是太阳系中最具标志性的特征之一。这个巨大的大气结构目前的直径相当于地球的直径,由于其醒目的红色,与木星苍白的云顶形成鲜明对比,因此很容易辨认出来。即使是小型望远镜也能捕捉到它的独特外观。GRS 是一个巨大的反气旋漩涡,其外缘的风速可达 450 公里/小时。它是太阳系所有行星大气层中规模最大、持续时间最长的漩涡。然而,GRS 的确切年龄仍有争议,其背后的形成过程仍是一个谜。

天文学家乔瓦尼-多梅尼科-卡西尼(Giovanni DomenicoCassini)在 1665 年首次用望远镜观测时,就发现了一个与地球同步卫星同纬度的暗椭圆形天体,并将其命名为"永久点"(PS),因为他和其他天文学家一直观测到 1713 年。

随后,它的踪迹消失了 118 年之久,直到 1831 年及以后,S. Schwabe 才再次观测到一个清晰的结构,大致呈椭圆形,与地球静止轨道位于同一纬度;这可以被视为对当前地球静止轨道的首次观测,或许是对新生地球静止轨道的观测。从那时起,一直到今天,人们通过望远镜和访问过地球的各种空间飞行任务定期对地球资源卫星进行观测。

在这项研究中,作者首先分析了它的大小随时间的演变、结构,以及前 PS 和 GRS 这两种气象形式的运动;为此,他们使用了可追溯到 17 世纪中叶(即望远镜发明后不久)的历史资料。

从左至右Enrique García-Melendo (UPC)、Agustín Sánchez Lavega 和 Jon Legarreta(UPV/EHU)。图片来源:Fernando Gómez.UPV/EHU

"根据对红斑大小和移动的测量,我们推断目前的红斑极有可能不是卡西尼观测到的红斑。红斑可能在 18 世纪中叶到 19 世纪之间的某个时候消失了,在这种情况下,我们可以说红斑现在的寿命至少超过了 190 年,"UPV/EHU 的物理学教授 Agustín Sánchez-Lavega 解释说,他是这项研究的负责人。1879 年,红斑最长轴的面积为 3.9 万公里,现在已经缩小到大约 1.4 万公里,同时变得更加圆润。

最新发现和模拟研究

此外,自 20 世纪 70 年代以来,多项太空任务对这一气象现象进行了密切研究。桑切斯-拉韦加解释说:"最近,环绕木星轨道运行的朱诺号任务所搭载的各种仪器显示,与水平尺寸相比,木星环流系统较浅且较薄,因为它的垂直长度约为 500 公里。"

为了弄清这个巨大漩涡是如何形成的,UPV/EHU 和 UPC 小组在西班牙超级计算机上进行了数值模拟,如西班牙超级计算网络(RES)中的 BSC MareNostrum IV,使用了木星大气中薄漩涡行为的两种互补模型。在这颗巨大的行星上,主要是沿平行线流动的强烈风流,其方向随纬度交替变化。在 GRS 的北面,风向为西风,时速为 180 公里;而在南面,风向则相反,为东风,时速为 150 公里。这就产生了巨大的南北风速切变,而这正是漩涡在其内部生长的基本要素。

在研究中,探索了一系列机制来解释地球同步卫星的成因,包括爆发巨大的超级风暴(类似于在孪生行星土星上很少观测到的超级风暴),或者风切变产生的多个较小涡旋的合并。结果表明,虽然在这两种情况下都会形成反气旋,但其形状和动态特性与目前的地球静止轨道不同。桑切斯-拉韦加说:"我们还认为,如果发生了其中一种不寻常的现象,当时的天文学家一定已经观测到并报告了它或它在大气层中的后果。"

数值模拟和未来研究

在第三组数值实验中,研究小组探索了风中一种已知的不稳定性如何产生 GRS,这种不稳定性被认为能够产生一个拉长的细胞,将它们包围并困住。这样一个细胞就是原地球同步卫星,一个新生的红斑,它随后的收缩将产生 19 世纪末观测到的紧凑而快速旋转的地球同步卫星。在木星上其他主要旋涡的形成过程中,已经观测到了大型细长细胞的形成。

UPC物理系研究员恩里克-加西亚-梅伦多(Enrique García-Melendo)说:"在我们的模拟中,超级计算机让我们发现,当拉长的细胞以木星风的速度围绕GRS外围旋转时,它们是稳定的。研究人员使用了两种不同类型的数值模型(一种在UPV/EHU,另一种在UPC),得出结论认为,如果原GRS的旋转速度低于周围风的旋转速度,原GRS就会破裂,从而无法形成稳定的漩涡。如果旋转速度非常高,原地球静止轨道的性质就会与当前的地球静止轨道不同。"

未来研究的目的是试图再现地球资源卫星随时间缩小的过程,以便更详细地了解其随时间持续存在的物理机制。同时,研究还将尝试预测 GRS 在达到一定大小极限时是否会解体和消失,就像卡西尼号 PS 可能发生的那样,或者它是否会稳定在一个大小极限上,从而可能会持续更多年。

编译自/scitechdaily

Section des commentaires

Pas encore de commentaire, ajoutez le premier.

弦圈热门内容

Djano云服务器部署 uwsgi+nginx+https部署

Django启动服务器的命令runserver,其实也是启动了一个自带的uwsgi服务。如果想要一直在后台不停的运行django项目,需要部署uwsgi服务器。uwsgi安装官方文档:安装uWSGI — uWSGI 2.0 文档 (uwsgi-docs-zh.readthedocs.io)可以直接用pip安装uwsgi:pip install uwsgi在django项目根地址,即跟manage.py同目录下新建配置文件uwsgi.ini,如:mysite1/uwsgi.iniuwsgi.ini必须以[uwsgi]开头,内容如下:[uwsgi] chdir=/mysite1 module=mysite1.wsgi:application socket=127.0.0.1:8000 master=True pidfile=uwsgi.pid vacuum=True max-requests=5000 daemonize=uwsgi.logchdir为django项目根地址,socket为django启动服务器的ip地址,daemonize为日志地址。注意,每个django项目中自动生成一 ...

token简介以及python计算token的方法

后端登陆实现需要用到token机制或者cookies机制。Token和cookies都可以用来存放用户信息。但是token可以将信息存放在浏览器中的localstorage中,不占用服务器内存,而cookies则需要在每次请求中送往服务器中,吃服务器资源。同时,token作为一种比cookies更新的技术,有更多的优势,可以参考token和cookie的区别。每个用户都可以对应一个token值。Token可以由用户名+密码+时间,经过哈希加密得到,也可以直接由用户名和密码经过加密算法加密后得到。复杂程度取决于自己。加密后得到的token值,存放在会话session中。Python使用哈希算法进行加密,计算token值:import hashlib md5 = hashlib.md5() md5.update((username+password+"1258"+str(time.time())).encode()) token = md5.hexdigest()也可以使用python的pip库pyjwt来实现加密,计算token值。$ pip install pyjwtJwt输入的是字 ...

为什么有了uwsgi 还要 nginx 服务器?

有关nginx的简单介绍,详见Nginx服务器反向代理。uwsgi是python的一个通信协议,同时也是一种web服务器,而nginx则是高性能反向代理的web服务器。在Django项目服务器部署中,uwsgi几乎是不可替代的。然而部署好了uwsgi,其实django接口已经能够响应请求,为什么还要额外配置nginx服务器?因为,相比于直接将真实地址暴露在公网上,在外面套一层nginx安全性更高,具体如下:安全问题,程序不能直接被浏览器访问到,而是通过nginx,nginx只开放某个接口,uwsgi本身是内网接口,这样运维人员在nginx上加上安全性的限制,可以达到保护程序的作用。负载均衡问题,一个uwsgi很可能不够用,即使开了多个work也是不行,毕竟一台机器的cpu和内存都是有限的,有了nginx做代理,一个nginx可以代理多台uwsgi完成uwsgi的负载均衡。静态文件处理效率问题,用django或是uwsgi这种东西来负责静态文件的处理是很浪费的行为,而且他们本身对文件的处理也不如nginx好,所以整个静态文件的处理都直接由nginx完成,静态文件的访问完全不去经过uwsg ...