·

Djano云服务器部署 uwsgi+nginx+https部署

发布时间:2024-05-15 10:46:48阅读量:341
专业文章
转载请注明来源

Django启动服务器的命令runserver,其实也是启动了一个自带的uwsgi服务。如果想要一直在后台不停的运行django项目,需要部署uwsgi服务器。

uwsgi安装官方文档:

安装uWSGI — uWSGI 2.0 文档 (uwsgi-docs-zh.readthedocs.io)

可以直接用pip安装uwsgi:

pip install uwsgi

在django项目根地址,即跟manage.py同目录下新建配置文件uwsgi.ini,如:mysite1/uwsgi.ini

uwsgi.ini必须以[uwsgi]开头,内容如下:

[uwsgi]
chdir=/mysite1
module=mysite1.wsgi:application
socket=127.0.0.1:8000
master=True
pidfile=uwsgi.pid
vacuum=True
max-requests=5000
daemonize=uwsgi.log

chdir为django项目根地址,socket为django启动服务器的ip地址,daemonize为日志地址。注意,每个django项目中自动生成一个mysite1/wsgi.py文件。

接下来cd 到 uWSGI 配置文件所在目录,执行以下代码即可:

uwsgi --ini uwsgi.ini

uWSGI的运行说明

  1. 无论是启动还是关闭,都要执行ps aux|grep 'uwsgi’确认是否符合预期
  2. 当uwsgi启动后,当前django项目的程序已变成后台守护进程,在关闭当前终端时此进程也不会停止
  3. 启动成功后,进程在后台执行,所有日志均输出在配置文件所在目录的uwsgi.log
  4. Django中代码有任何修改,都需要重启uwsgi(重启即为先关闭,再开启)

配置好uwsgi服务后,还需要进一步配置nginx服务器,原因见为什么有了uwsgi 还要 nginx 服务器?Nginx服务器反向代理。为了更高的加密性,我们可以使用nginx配置HTTPS协议。以下我们以腾讯云服务器为例,通过nginx配置HTTPS:

首先找到/etc/nginx/conf.d,然后创建新文件django_nginx.conf

sudo vim django_nginx.conf

接下来输入以下设置

# 这种写法比较方便配合负载均衡
upstream backend {
	# 这里的IP端口即Django项目的IP端口
    server 127.0.0.1:8000;
    # 如果uwsgi使用的本地文件,此处写法参考
    # server unix:/path/to/your/mysite/mysite.sock;
}
server {
     listen 443 ssl;
     autoindex on;
     client_max_body_size 1024m;
     #请填写绑定证书的域名
     server_name example.com; 
     #请填写证书文件的相对路径或绝对路径
     ssl_certificate example.com_bundle.crt; 
     #请填写私钥文件的相对路径或绝对路径
     ssl_certificate_key example.com.key; 
     ssl_session_timeout 5m;
     #请按照以下协议配置
     ssl_protocols TLSv1.2 TLSv1.3; 
     #请按照以下套件配置,配置加密套件,写法遵循 openssl 标准。
     ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:HIGH:!aNULL:!MD5:!RC4:!DHE; 
     ssl_prefer_server_ciphers on;
     
     location /static {
        alias /path/to/your/mysite/static/;
    }
    location / {
        include uwsgi_params;
        uwsgi_pass backend;
    }
}

最后重新加载nginx,就大功告成啦!

sudo nginx -s reload


评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

基变换映射$U\times_{X}X\rightarrow U\times_{Y}Y$

我的提问:令$X,Y$是概形。令$X\rightarrow Y,X\rightarrow X, Y\rightarrow Y$为概形态射。为什么态射$U\times_{X}X\rightarrow U\times_{Y}Y$是$X\rightarrow X\times_{Y}Y$通过$U\times_{Y}Y\rightarrow Y$的基变换。这是我尝试的图,其中三角形是交换的。但是我发现$(U\times_{Y}Y)\times_{Y}(X\times_{Y}Y)=U\times_{Y}X\times_{Y}Y=U\times_{Y}X$,即我无法得到想要的$U\times_{X}X$。我这是犯了什么错误?这是问题的上下文,来自朱歆文的论文Affine Grassmannians and the geometric Satake in mixed characteristic (arXiv link):引理 A.2. 对任何代数空间的平展态射$X\to Y$,由$\sigma_X$导出的相对Frobenius态射$X\to X\times_{Y,\sigma_Y}Y$是一个同构。证 ...

阿基米德性质的乘法形式

我的提问:令$(\Gamma,+,\leq)$为一个有序阿贝尔群。我们知道阿基米德性质可以表述为:对所有$a,b\in\Gamma$,如果$a>0,b\geq0$,则存在$n\geq0$使得$b\leq na$。然而如果我们考虑乘法的情况,即有序阿贝尔群是$(\Gamma,\cdot,\leq)$。是否存在乘法形式的阿基米德性质?我认为存在。并且我对它的描述如下:对于所有$a,b\in\Gamma$,如果$b<1,a\leq1$,则存在$n\geq0$使得$b^{n}\leq a$。这是正确的吗?实际上,我没能证明它等价于$\Gamma$有凸秩1。回答:你正确地叙述了阿基米德性质的乘法版本。令$\Gamma$为一个满足阿基米德性质的有序乘法群。假设$H$是$\Gamma$的一个凸子群,且满足$H\ne \{1\}$。令$1\ne x\in H$。然后有$\{x,x^{-1}\}\subset H$,且$\{x,x^{-1}\}$中的一个成员是$>1$。因此,不失一般性,令$1<x\in H$。(i). 如果$1\le y\in\Gamma$,存在$n\in \B ...

高智商与心理疾病仅“一墙之隔”?

“从天才到疯子,仅有一步之遥。”这是英国诗人约翰·德莱顿的一句名言。世界上许多有才华的人都与精神疾病沾边,这让科学家对这个问题很有兴趣。一直以来,他们都想找到一个答案,高智商与心理疾病之间是否存在一定的相关性?最近,克里蒙特学院联盟培泽学院的科学家在心理学期刊Intelligent发表了一项研究成果,他们发现,高智商人群罹患焦虑、抑郁、自闭等症状的比例要高于普通大众。高智商与精神疾病这项研究的样本比较特别,培泽学院的科学家选择了3715名门萨俱乐部成员,测试他们的精神健康。门萨俱乐部是世界顶级智商社团组织,目前它的会员遍及全球100多个国家和地区,人数高达十几万,智商均在130以上。但是,测试结果显示,其中约有20%的会员患有抑郁症和焦虑症,而在普通人群中,这一比例只有10%。不仅如此,他们还发现,门萨会员似乎也更容易患哮喘、过敏和免疫力底下等疾病。他们试图回答一个问题,高智商是否会加剧心理反应进而影响身体的免疫水平?根据《每日邮报》的报道,研究人员的解释是,高智商人群之所以患精神疾病的比例更高,也许是因为他们过于亢奋、敏感,导致情绪失调。而已有的科学研究认为,心理问题可能引发身体的炎 ...

吴宝珠:不要浪费时间写糟糕的论文,一篇好论文胜过一百篇垃圾论文

吴宝珠1972年出生于越南一个学者家庭,15岁时进入越南国立河内大学附属高中的数学专修班,1988年和1989年,他连续两届参加国际奥林匹克数学竞赛,获两枚金牌。他在法国完成大学学习,在博士研究生阶段开始研究朗兰兹纲领;2008年,他证明了朗兰兹纲领的基本引理。朗兰兹纲领由加拿大裔美国数学家罗伯特·朗兰兹(Robert Langlands)发起。1979年,朗兰兹提出一项雄心勃勃的革命性理论:将数学中两大分支——数论和表示论联系起来,其中包含一系列的猜想和洞见,最终发展出“朗兰兹纲领”。朗兰兹认为,纲领的证明需要几代人的努力,但他相信证明纲领的前提需要一个基石——基本引理,而且这个证明应该比较容易。然而,基本引理的证明实在是太难了,直到29年后,2008年,年轻的吴宝珠才用自己天才的方法,将之证明。2009年,美国《时代》周刊将基本引理的证明列为年度十大科学发现之一。2010年9月1日,吴宝珠成为美国芝加哥大学的正教授。前段时间,应哈佛大学数学教授、清华大学数学科学中心主任丘成桐邀请,吴宝珠到北京作为期一周的学术访问,其间,他接受了《科学时报》记者采访,谈及自己的数学之路。在越南展露数 ...

说过多少遍不要All in AI!初创公司没有一个产生现金流的业务就搞AI无异于在裸泳

这段时间是AI大火的时期,企业之间大模型的竞争已经进入白热化阶段,很多初创公司也相继涌入了AI大模型赛道。不少人争相加入AI赛道的原因,是相信,这将会是一场新的工业革命,或者说这相当于上次的互联网革命。这里我并不否认这种观点,而是想指出,现在没人真的能确定这场AI大热是否真的能产生堪比工业革命的收益。如果商业化落地成功,且能满足大量的市场需求从而能产生大量的利润,才能说这或许是一场工业革命。而且换位思考一下,如果你确定这是次巨大的机缘,那为什么要公之于众呢?不仅公之于众还要大肆宣扬,生怕有人不知道,这正常吗?是不是跟股市一样,大喊着“牛市”了,要涨了,然后一堆韭菜入局。目前来看,AI的局势还处在混沌摸索之中,绝大多数人的钱注定会打水漂,已经有大量的AI公司倒下了。讽刺的是,有些通过AI热赚到钱的,反而是卖课割韭菜的。然后关于目前的行情,从明星AI创业公司的动向,也能看出一二,不少明星创业公司选择卖身,或者创始团队分崩离析,还有创始人流下烂摊子直接跑路的。就连最大的OpenAI如今创始人团队都走光了。连明星创业公司都如此,如果你这时候选择All in AI,你想想那失败的风险有多大,就跟 ...