·
Article

为什么无限求和需要被有意义的?

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

我的提问:例如单位分解(partition of unity)中的求和以及抽象代数中的多项式表达式。回答:拥有无限多项的求和(或者说更加正式的“级数”)需要一些额外的条件来保证他们“表现良好”("well behaved")。否则你可能得到像以下这样的悖论:$$\begin{align} &S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S = 2 + 2 + 2 + \dots \\ &\Rightarrow 2S = (1+1) + (1+1) + (1+1) + \dots \\ &\Rightarrow 2S = 1 + 1 + 1 + \dots \\ &\Rightarrow 2S=S \\ &\Rightarrow S = 0 \end{align}$$一般地,额外的条件包含,要求除了有限数量的项都为$0$(数学简称中的“几乎所有”)或者收敛条件来确保求和有一个极限值。本问题问于2020年1月22号,当时我在读高三,提问的水平非常差😅,跟Peter Scholze这种高中就懂谱序列的没得比🙃。

1Like
Dislike
64
0 Comment
2024-10-25 18:15:49
Read more
·
Article

抽象代数中如何执行归纳法?

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

我的提问:我无法理解在这个证明中,归纳法这个步骤是如何进行的。有人能帮帮我吗?感谢!回答:令$n = deg B$。他们通过对$m = deg A$做归纳法来证明那个陈述。基本情况是$m < n$。如果$m \geq n$,然后他们找到另一个多项式$A'$,在这种情况下,$A' = A - B a_m X^{m - n}$,并且它有比$m$更小的阶数。所以我们可以通过归纳假设来处理它。$A′$的商和余数表达式是用于找到$A$的。我想有两件事你可能会觉得困扰,以及为什么你没有认出归纳法。首先,基本情况不仅仅是一种情况,而是一堆情况。这里请注意,这是基本的:证明中的归纳步骤仅适用于$m\geq n$。同时注意,在这种情况下,证明$m=1$的工作量并不比证明$m<n$小:对于所有这些情况,这都是一行证明。你可能会觉得困扰的第二件事是,我们不仅对$m-1$使用归纳假设,对任何阶数严格小于$m$的多项式也使用归纳假设。这被称为完全归纳法或强归纳法:在归纳步骤中,你假设的是,命题不多于$m-1$时都是真的,而不仅仅是$m-1$。这在维基百科的“归纳法”页面上得到了很好的解释。

0Like
Dislike
52
0 Comment
2024-10-25 17:58:33
Read more
·
Article

范畴中的态射一定得保持结构吗?我在教材中找到了一些不一样的

Nekomusume
Nekomusume

This person is lazy, nothing was left behind...

我的提问:众所周知,范畴中对象之间的态射都是保持结构的。但是在一本教材中,我发现它说态射一般是保持结构的。这是否意味着存在不保持结构的态射?回答1:一个范畴不需要非得由带有某些额外结构的集合与保持这个结构的映射构成。不是这种类型的范畴的例子有:给定任意一个群$G$,我们可以构造一个范畴,它由一个对象$*$和每个$g\in G$的一个态射$\varphi_g\colon *\to *$组成。这里,态射的复合通过群运算来定义,并且$\operatorname{id}_* = \varphi_{e}$对于单位元$e\in G$。给定一个偏序集$(P,\le)$,我们可以构造一个范畴,它由对象集$P$和每个满足$x\le y$的$x,y\in P$有且仅有一个的态射$x\to y$组成。拓扑空间的同伦范畴,它的对象都是拓扑空间,每个态射$X\to Y$是一个连续映射$f\colon X\to Y$的同伦群$[f]$。回答2:我认为问题出在这里众所周知,范畴中对象之间的态射都是保持结构的。事实并非如此。范畴这个概念推广了“带有结构的集合和保持结构的函数”,例如群和同态,或者拓扑空间和连续映射。但 ...

0Like
Dislike
158
0 Comment
2024-10-19 10:21:55
Read more
·
Article

如何构建一个比复数域$\mathbb{C}$还要大的域?

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

本文我们探讨这个问题:是否存在一种扩张复数域$\mathbb{C}$的方法,使得$\mathbb{C} \subset\mathbb{C}[a]$?或者$\mathbb{C}$是所有域扩张的终点?下面围绕这个问题,我们将提供两种扩张复数域$\mathbb{C}$的方法。方法1:$\mathbb{C}$的笛卡儿积$$P = {\Bbb C}\times{\Bbb C}\times\cdots$$并不是一个域,因为它有零因子:$$(0,1,0,1,\cdots)(1,0,1,0\cdots)=(0,0,0,0,\cdots)。$$但是将零因子商掉,就能得到一个域。令$\mathcal U$为$\Bbb N$上的一个nonprincipal ultrafilter。我们定义$$(a_1,a_2,\cdots)\sim(b_1,b_2,\cdots)$$当$$\{n\in\Bbb N\,\vert\, a_n=b_n\}\in\mathcal U。$$然后商$F = P/\sim$就是一个严格比$\mathbb{C}$大的域,我们称这个域为超积(英语:ultraproduct)。并且嵌入映射$ ...

0Like
Dislike
182
0 Comment
2024-10-15 19:04:35
Read more
·
Article

$\mathbb{R}$的有限域扩张是$\mathbb{R}$或者同构于$\mathbb{C}$

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

我们需要证明的命题如下:令$F$为包含$\mathbb{R}$的任意一个域,它满足性质$\dim_{\mathbb R}F < \infty$。然后我们有$F \cong \mathbb R$或者$F \cong \mathbb C$。下面我们给出三个证明,其中第一个证明最为简洁,最后一个最为复杂。证明:由代数闭包的唯一性,我们有嵌入$F \hookrightarrow \mathbb C$,因此我们有$\mathbb R \subset F \subset \mathbb C$。然后命题结论可由$[\mathbb C:\mathbb R]=2$得出,因为这排除了真中间域的存在。证明2:因为$F$在$\mathbb{R}$上是有限维的,它在$\mathbb{R}$上代数。这是关于域扩张的一个基本事实:如果$a\in F$,然后$1,a,a^2,\dots,a^n$在$\mathbb{R}$上线性相关,这里$n=\dim_{\mathbb{R}}F$。所以$F$的每个元素是一个$\mathbb{R}$系数多项式的根。如果$-1$在$F$中不是一个平方,我们可以添加一个平方根$j$( ...

0Like
Dislike
113
0 Comment
2024-10-12 17:01:23
Read more
·
Article

Anti-homomorphism in Rings

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

ABSTRACTIn this chapter, the concept of anti-homomorphisms in Rings is studied and many results are established.INTRODUCTIONThe concept of anti–homomorphism in groups and rings is not found much in the literature. Authors like Jocobson Neal McCoy and Zariski and Samul have touched this concept in a lighter way. The reason is perhaps that the composition of two anti-homomorphisms is not an anti-homomorphism, but a homomorphism. This discouraged the mathematicians to move further. In 2006, G. Gopa ...

0Like
Dislike
128
0 Comment
2024-08-20 17:46:28
Read more
··
4 months ago
·
Book

An introduction to different branches of mathematics

cover

The note is mainly a sketch of basic knowledge concerning general topology, differential geometry, functional analysis, algebraic geometry, etc., starting from a discussion of Euclidean spaces. However, there maybe some mistakes in the note, so use at your own risk. For simplicity, some details are omitted and can be found in the references provided. Further materials concerning algebraic geometry, especially arithmetic algebraic geometry, can be referred to another note written by the author, N ...

··
5 months ago
·
Book

Note on arithmetic algebraic geometry

cover

The note is mainly a summary of basic knowledge that the author learned in arithmetic geometry. One of the aims of this note is to provide a preliminary for Perfectoid geometry. Most contents are fundamental, but they are essential towards Perfectoid geometry. The ultimate goal of this note is to help readers to understand Peter Scholze's classic paper , where the notion of perfectoid spaces first appeared.

·
Article

An introduction to anti-homomorphisms of groups

Ricciflows
Ricciflows

This person is lazy, nothing was left behind...

It is known that the homomorphisms between group preserve products. However, the anti-homomorphisms between groups invert products in contrast to the homomorphisms. In this article, we briefly introduce the notion of anti-homomorphisms of groups, and we will study anti-homomorphisms of rings in the next article.1. Anti-homomorphisms of groups.In this section, all groups are not necessarily abelian. For simplicity, we will simply call anti-homomorphism instead of anti-homomorphism of groups.Defin ...

1Like
Dislike
449
0 Comment
2024-04-25 21:12:15
Read more
Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved