Towards Topology

Published at 2024-07-11 12:23:14Viewed 137 times
未经作者授权,请勿转载

In this section, we will review more general topology.

First, we take real functions $f:\mathbb{R}\supset D\rightarrow\mathbb{R}$ as an example to motivate the definition of continuous functions between topological spaces.

Definition. We say that $f$ is continuous at a point $x_{0}\in D$ if for every $\varepsilon>0$, there exists $\delta>0$ such that for all $x\in D$, $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f(x_{0})\right|<\varepsilon$.

Lemma. Let $x\in D$. Then $f$ is continuous at $x$ if and only if for every neighborhood $V\ni f(x)$ there exists a neighborhood $U\ni x$ such that $f(U)\subset V$.

Proof. Assume that $f$ is continuous at $x$. By definition, for every neighborhood $\mathbb{B}(f(x),\varepsilon)$ there exists a neighborhood $\mathbb{B}(x,\delta)$ such that $f(\mathbb{B}(x,\delta))\subset\mathbb{B}(f(x),\varepsilon)$.

Conversely, for every $\left|f(x)-f(x_{0})\right|<\varepsilon$, where $f(x)\in V$ and $\varepsilon>0$, there exists $\delta>0$ with $\left|x-x_{0}\right|<\delta,x\in U$.

$\Box$

So we can make use of neighborhoods to define continuity of a real function. We generalize this to topological spaces. Let $X,Y$ be two topological spaces.

Definition 3.1. We say that $f:X\rightarrow Y$ is continuous at $x\in X$ if for every open set $V\subset Y$ containing $f(x)$, there exists an open set $U\subset X$ containing $x$ such that $f(U)\subset V$. And we say that $f$ is continuous on $X$ or simply continuous if it is continuous at every point in $X$.

Proposition 3.2. A function $f:X\rightarrow Y$ is continuous if and only if for every open set $V\subset Y$, $f^{-1}(V)$ is open in $X$.

Proof. Assume that $f$ is continuous. Then for every neighborhood $V\subset Y$ of some point $y\in Y$, there exists a neighborhood $U\subset X$ of $x$ such that $f(x)=y,f(U)\subset V$. Then we have $x\in U\subset f^{-1}(f(U))\subset f^{-1}(V)$, which implies that $f^{-1}(V)$ is open in $X$.

Conversely, assume that for every open set $V\subset Y$, $f^{-1}(V)$ is open in $X$. Let $x\in f^{-1}(V)$ be some point, then $f(x)\in V$. So we have $f(f^{-1}(V))=V\subset V$, which shows that $f$ is continuous.

$\Box$

Definition 3.3. By Proposition 3.2, we can equivalently define continuous functions in terms of open sets: We say that a function $f:X\rightarrow Y$ is continuous if for every open set $V\subset Y$, $f^{-1}(V)$ is open in $X$.

Next, we introduce a map that preserves topological property.

Definition 3.4. A function $f:X\rightarrow Y$ is called a homeomorphism if $f$ is bijective and $f,f^{-1}$ are both continuous. We say that $X$ is homeomorphic to $Y$, which is denoted by $X\cong Y$, if there exists a homeomorphism $f:X\xrightarrow{\sim}Y$.

Remark 3.5. Abstractly, two homeomorphic topological spaces have no difference.

Proposition 3.6. Every compact subset of a Hausdorff space $X$ is closed.

Proposition 3.7. Every singleton of a point in a Hausdorff space $X$ is closed.

Definition 3.8. Let $X$ be a topological space. A subset $U\subset X$ is dense in $X$ if $\overline{U}=X$.

References

  1. [Lor]Loring W. Tu, An Introduction to Manifolds, 2nd ed., Springer, New York, NY, 2011.
  2. [Die]Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  3. [Pin]Andrew Pinchuck, Functional analysis notes, Department of Mathematics (Pure andApplied), Rhodes University, 2011.
  4. [Bos]Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  5. [Gilt]Pierre Antoine Grillet, Abstract Algebra, 2nd ed., Graduate Texts in Mathematics, vol.242, Springer-Verlag New York, 2007.
  6. [Har]Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, NY, 1977.
  7. [SP]Stack project authors, Stack Project, https://stacks.math.columbia.edu/, 2021.
  8. [Lia]T.W. Liang, Note On Arithmetic Geometry, available at  https://www.manitori.xyz/books/1, 2022.
  9. [Hilt]Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Graduate Textsin Mathematics, Volume 4, Springer-Verlag New York, 1997.
  10. [Mac]Saunders Mac Lane, Categories for the Working Mathematician, Second Edition,Graduate Texts in Mathematics, Volume 5, Springer-Verlag New York, Tnc. in 1971.
  11. [Sten]Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton University Press,2003.
  12. [Rub]Rubí E. Rodríguez, Irwin Kra, Jane P. Gilman, Complex Analysis, In the Spirit ofLipman Bers, Second Edition, Graduate Texts in Mathematics, volume 245, SpringerNew York, NY, 2013.
Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved