Rigid-Analytic Spaces

发布时间:2024-10-22 17:38:52阅读量:8
未经作者授权,请勿转载

A rigid-analytic space is an analogue of a complex analytic space over a non-archimedean field, which first made its appearance in John Tate's thesis \cite{Tate}. In this section, we will introduce the notion of rigid space, using \cite{Tate} as our reference. All rings are commutative with identity and $K$ is the fixed ground field, which is complete with respect to a non-trivial rank-1 valuation denoted by $\left|\cdot\right|$. The valuation ring of $K$ is denoted by $V$ and its maximal ideal is denoted by $\mathfrak{m}$. And $x$ is a fixed non-zero element in $\mathfrak{m}$, i.e. $0<\left|x\right|<1$.

§7.1. Vector Spaces.

Let $E$ be a vector space over $K$. Then $E$ is also a $V$-module if we restrict the scalar multiplication to $V\times E$. We let $E_{0}$ be a $V$-submodule of $E$ such that $E=KE_{0}$.

Set $E_{n}:=x^{n}E_{0}$ for $n\in \mathbb{Z}$. We obtain a filtration

$$ E\supset \cdot\cdot\cdot\supset E_{-n}\supset E_{-n+1}\supset\cdot\cdot\cdot\supset E_{0}\supset\cdot\cdot\cdot\supset E_{n}\supset E_{n+1}\supset \cdot\cdot\cdot\supset0 $$

of $E$ (note that we have $x^{-\infty}E_{0}=E$ and $x^{\infty}E_{0}=0$). It is easy to see that using such filtration, we can form a fundamental system of neighborhoods of 0 in $E$.

So one can define a topology on $E$ by saying a subset $U\subset E$ is open if for every $y\in U$, $y+x^{n}E_{0}\subset U$ for some $n\in\mathbb{Z}$. Such topology is said to be defined by $E_{0}$.

Lemma 7.1. Let $F$ be another $K$-vector space whose topology is defined by $F_{0}$. A $K$-linear map $\varphi:E\rightarrow F$ is continuous if and only if there exists some integer $n$ such that $\varphi(E_{0})\subset x^{-n}F_{0}$.

Proof. Let $p\in E$ be any point. If $\varphi$ is continuous, then for every neighborhood $\varphi(p)\in V$ in $F$, there exists a neighborhood $p\in U$ in $E$ such that $U\subset V$. This implies that for a neighborhood $F_{0}$ of 0 in $F$, there exists integer $n$ such that $\varphi(x^{n}E_{0})\subset F_{0}$. Hence we have $\varphi(E_{0})\subset x^{-n}F_{0}$.

Conversely, if there is some integer $n$ such that $\varphi(E_{0})\subset x^{-n}F_{0}$, then we have $\varphi(x^{n}E_{0})\subset F_{0}$. Thus, for every $m\in\Z$, we have $\varphi(x^{n+m}E_{0})\subset x^{m}F_{0}$, which shows that for every open $V\subset F$ and $y\in\textrm{Im }\varphi\cap V$, we have $\varphi(y_{0}+x^{n+m}E_{0})\subset y+x^{m}F_{0}\subset V$ where $y=\varphi(y_{0})$.

$\Box$

参考文献

  1. [1]HH. Matsumura, Commutative Ring Theory. Vol. 8 of Cambridge Studies in Advanced Mathematics(1989).
  2. [2]N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algébre commutative. Chapitre 6: Valuations. Actualités Scientifiques et Industrielles, No. 1308. Hermann, Paris, 1964.
  3. [3]N. Bourbaki, Algebra II, Chapters 4-7, Elements Of Mathematics, Springer, Berlin, Heidelberg, 2003.
  4. [4]Pierre Antoine Grillet, Abstract Algebra, 2nd ed., Graduate Texts in Mathematics, vol. 242, Springer-Verlag New York, 2007.
  5. [5]Serge Lang, Algebra, 3nd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag New York, 2002.
  6. [6]Serge Lang, Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer, New York, NY, 1994.
  7. [7]Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  8. [8]S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der mathematischen Wissenschaften 261, Springer-Verlag Berlin, Heidelberg 1984.
  9. [9]Linus Kramer, Locally Compact Groups and Lie Groups, Part I Basic Properties of Topological Groups, 1 Topological Groups, https://www.uni-muenster.de/AGKramer/content/ch1.pdf, 2020.
  10. [10]Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, Chapter 1 Topological Spaces, 1.7 Topological Groups, 2008.
  11. [11]Stack Project authors, Stack Project, https://stacks.math.columbia.edu/, 2022.
  12. [12]Dinakar Ramakrishnan and Robert J. Valenza, Fourier analysis on number fields, Graduate Texts in Mathematics, vol. 186, Springer-Verlag, New York, 1999.
  13. [13]Pierre Deligne, Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Springer-Verlag Berlin Heidelberg, Lecture Notes in Mathematics, volume 569, 1977.
  14. [14]Alexander Grothendieck and Michèle Raynaud, Revêtements Étales et Groupe Fondamental, Lecture Notes in Mathematics, Volume 224, Springer, Berlin, Heidelberg, 1971.
  15. [15]Alexander Grothendieck, Artin, M. and Verdier, J. L. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Springer-Verlag Berlin Heidelberg, 1973.
  16. [16]Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), pp. 245-313.
  17. [17]Peter Scholze, Étale cohomology of diamonds, Preprint, 2018.
  18. [18]R. Huber. Continuous valuations. Math. Z., 212(3):455-477, 1993.
  19. [19]Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics, Volume 186, American Mathematical Society, 2017.
  20. [20]O. Gabber and L. Ramero. Almost ring theory, volume 1800 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003.
  21. [21]Ofer Gabber and Lorenzo Ramero, Foundations For Almost Ring Theory, Release 7.5, 2019.
  22. [22]Jean-Marc Fontaine and Yi Ouyang, Theory of p-adic Galois Representations, preprint, 2008.
  23. [23]James Dugundji, Topology, Allyn and Bacon, Inc.470 Atlantic Avenue, Boston., 1966.
  24. [24]Antoine Ducros, Charles Favre and Johannes Nicaise, Berkovich Spaces and Applications, Springer International Publishing, Lecture Notes in Mathematics, Volume 2119, 2015.
  25. [25]Vladimir G. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, American Mathematical Society, 1990.
  26. [26]Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 78, 5-161 (1993). https://doi.org/10.1007/BF02712916.
  27. [27]Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, Volume 4, Springer-Verlag New York, 1997.
  28. [28]A. Grothendieck and J. A. Dieudonné, Eléments de Géométrie Algébrique I, Springer-Verlag Berlin Heidelberg New York, 1971.
  29. [29]A. Grothendieck, Some aspects of homological algebra, https://www.math.mcgill.ca/barr/papers/gk.pdf, 2011.
  30. [30]Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Graduate Texts in Mathematics, Volume 97, Springer-Verlag New York, Inc., 1993.
  31. [31]Fred Diamond and Jerry Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, Volume 228, Springer-Verlag New York, 2005.
  32. [32]Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, Volume 58, Springer, New York, NY, 1984.
  33. [33]Fernando Q. Gouvêa, p-adic Numbers An Introduction, 3rd ed, Universitext, Springer, Cham, 2020.
  34. [34]J-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, Volume 7, Springer, New York, NY, 1973.
  35. [35]J-P. Serre, Local Fields, Graduate Texts in Mathematics, Volume 67, Springer, New York, NY, 1979.
  36. [36]Jean-Pierre Serre, Galois Cohomology, Springer-Verlag Berlin Heidelberg, 1997.
  37. [37]Tim Browning and Florian Bouyer, Local Fields, Bouyer, https://warwick.ac.uk/fac/sci/maths/people/staff/fbouyer/local_fieldstcc.pdf, 2013.
  38. [38]Paul J. McCarthy, Algebraic extensions of fields, New York: Dover Publications., 1991.